Replacing Rewrite Rules by Equational Axioms in the $\lambda\Pi$ -Calculus Modulo Theory

LMF PhD Seminar

Thomas Traversié joint work with Valentin Blot, Gilles Dowek and Théo Winterhalter

May 28th 2024

Axioms

$$x + \operatorname{succ} y = \operatorname{succ} (x + y)$$

 $x + 0 = x$

Deduction

$$\begin{array}{rcl} 2+2 &:= & {\rm succ}^2 \ 0 + {\rm succ}^2 \ 0 \\ &= & {\rm succ} \ ({\rm succ}^2 \ 0 + {\rm succ} \ 0) \\ &= & {\rm succ}^2 \ ({\rm succ}^2 \ 0 + 0) \\ &= & {\rm succ}^2 \ ({\rm succ}^2 \ 0) \\ &:= & 4 \end{array}$$

Another proof of 2 + 2 = 4

For Poincaré, deriving 2 + 2 = 4 is not a meaningful proof, but a simple verification

Rewrite rules

$$x + \operatorname{succ} y \hookrightarrow \operatorname{succ} (x + y)$$
$$x + 0 \hookrightarrow x$$

Computation

$$2+2 := succ2 0 + succ2 0$$

$$\equiv succ (succ2 0 + succ 0)$$

$$\equiv succ2 (succ2 0 + 0)$$

$$\equiv succ2 (succ2 0)$$

$$:= 4$$

so 2 + 2 = 4 using the reflexivity of equality

Logical systems with equational axioms

 $x + \operatorname{succ} y = \operatorname{succ} (x + y)$ x + 0 = x

We prove that 2 + 2 = 4

Logical systems with rewrite rules

$$\begin{array}{c} x + {\rm succ} \ y \hookrightarrow {\rm succ} \ (x+y) \\ x+0 \hookrightarrow x \end{array}$$

We compute that $(2 + 2 = 4) \equiv (4 = 4)$

Logical systems with equational axioms

 $x + \operatorname{succ} y = \operatorname{succ} (x + y)$ x + 0 = x

We prove that 2 + 2 = 4

If ℓ : *list* (2 + 2) but not necessarily ℓ : *list* 4 Logical systems with rewrite rules

$$\begin{array}{c} x + {\rm succ} \ y \hookrightarrow {\rm succ} \ (x+y) \\ x+0 \hookrightarrow x \end{array}$$

We compute that $(2 + 2 = 4) \equiv (4 = 4)$

If
$$\ell$$
 : *list* (2 + 2)
then ℓ : *list* 4

Logical systems with equational axioms

 $x + \operatorname{succ} y = \operatorname{succ} (x + y)$ x + 0 = x

We prove that 2 + 2 = 4

If ℓ : list (2 + 2)then transp $e \ \ell$: list 4 with e : 2 + 2 = 4 and transp : $(2 + 2 = 4) \rightarrow$ list $(2 + 2) \rightarrow$ list 4 Logical systems with rewrite rules

$$\begin{array}{c} x + {\rm succ} \ y \hookrightarrow {\rm succ} \ (x+y) \\ x+0 \hookrightarrow x \end{array}$$

We compute that $(2 + 2 = 4) \equiv (4 = 4)$

If
$$\ell$$
 : *list* (2+2)
then ℓ : *list* 4

The $\lambda\Pi\text{-calculus}$ modulo theory

- The $\lambda\Pi$ -calculus modulo theory [Cousineau and Dowek, 2007]
 - $= \lambda \text{-calculus}$
 - $+ \ dependent \ types$
 - + rewrite rules

Logical framework

- Possible to express many theories
- Application: proof interoperability
- Implemented in DEDUKTI [Assaf et al, 2016]
- User-friendly framework
 - Deduction \rightarrow user
 - Computation \rightarrow system

- Theoretical motivation: Is a result provable with rewrite rules also provable with axioms?
- Practical motivation: Interoperability between proof systems via DEDUKTI
- Contribution [FoSSaCS 2024]

Rewrite rules can be replaced by equational axioms in the $\lambda\Pi$ -calculus modulo theory with a prelude encoding

- **Deduction modulo theory** = first-order **predicate logic** + rewrite rules → Rewrite rules can be replaced by axioms [Dowek et al, 2003]
- Translations of extensional type theory into intensional type theory [Oury, 2005, Winterhalter et al, 2019]
 - In extensional type theory, $\ell = r$ entails $\ell \equiv r$
 - In the $\lambda\Pi\text{-calculus}$ modulo theory, $\ell \hookrightarrow r$ entails $\ell \equiv r$

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

The $\lambda \Pi$ -calculus modulo theory

Syntax

Sorts	$s ::= \texttt{TYPE} \mid \texttt{KIND}$
Terms	$t, u, A, B \coloneqq c \mid x \mid s \mid \Pi x : A. B \mid \lambda x : A. t \mid t u$
Signatures	$\Sigma ::= \langle angle \mid \Sigma, c : A \mid \Sigma, \ell \hookrightarrow r$
Contexts	$\Gamma ::= \langle \rangle \mid \Gamma, x : A$

 $\Pi x : A. B$ written $A \rightarrow B$ if x not in B

- Careful!
 - No identity types
 - Finite hierarchy of sorts TYPE : KIND

- $\hookrightarrow_{\beta\Sigma}$ is generated by β -reduction and the rewrite rules of Σ
- \blacksquare Theory ${\mathcal T}$ defined by a signature Σ such that:
 - for each $\ell \hookrightarrow r \in \Sigma$, the constants that occur in ℓ and r belong to Σ
 - the relation $\hookrightarrow_{\beta\Sigma}$ is confluent
 - each rule of Σ preserves typing

$$\frac{\Gamma \vdash A : \texttt{TYPE} \quad \Gamma, x : A \vdash B : s}{\Gamma \vdash \Pi x : A. B : s} \text{ [Prod]}$$

 $\frac{\Gamma \vdash A: \texttt{TYPE} \quad \Gamma, x: A \vdash B: s \quad \Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A. \ t: \Pi x: A. \ B} \text{ [Abs]}$

$$\frac{\Gamma \vdash t : \Pi x : A. \ B}{\Gamma \vdash t \ u : B[x \mapsto u]} \ [App]$$

Conversion rule

$$\frac{\Gamma \vdash t : A \qquad (\Gamma \vdash A : s) \equiv (\Gamma \vdash B : s)}{\Gamma \vdash t : B}$$
[Conv]

- **Convertibility rules** for building $(\Gamma \vdash u : A) \equiv (\Delta \vdash v : B)$
 - Generated by $\beta\text{-reduction}$ and the rewrite rules of Σ
 - Closed by context, reflexive, symmetric and transitive

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

- Encoding Σ_{pre} of the notions of **proposition** and **proof** [Blanqui et al, 2023] \hookrightarrow Always used in practice
- Universe of sorts Set with injection El : Set → TYPE → Sort of propositions o, proposition P of type El o
- Universe of propositions El o with injection Prf : El o → TYPE → A proof of P is of type Prf P

Rewrite rules of the encoding

- Desired behaviour:
 - Functionality El $(a \rightsquigarrow b) \hookrightarrow El \ a \to El \ b$
 - Implication Prf $(a \Rightarrow b) \hookrightarrow$ Prf $a \rightarrow$ Prf b
 - Universal quantifier Prf ($\forall a b$) $\hookrightarrow \Pi z$: El a. Prf (b z)
- Four constants and rewrite rules

$$EI (a \rightsquigarrow_d b) \hookrightarrow \Pi z : EI a. EI (b z)$$

$$Prf (a \Rightarrow_d b) \hookrightarrow \Pi z : Prf a. Prf (b z)$$

$$Prf (\forall a b) \hookrightarrow \Pi z : EI a. Prf (b z)$$

$$EI (\pi a b) \hookrightarrow \Pi z : Prf a. EI (b z)$$

 $\begin{array}{cccc} \mathsf{nat} : \mathit{Set} & + : \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} & \mathsf{list} : \mathit{El} \ \mathsf{nat} \to \mathit{Set} \\ \mathsf{0} : \mathit{El} \ \mathsf{nat} & x + \mathsf{0} \hookrightarrow x & \mathsf{nil} : \mathit{El} \ \mathsf{(list} \ \mathsf{0}) \\ \mathsf{succ} : \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} & x + \mathsf{succ} \ y \hookrightarrow \mathsf{succ} \ (x + y) \\ & \mathsf{cons} : \ \Box x : \mathit{El} \ \mathsf{nat} . \ \mathit{El} \ \mathsf{list} \ x \to \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{(list} \ (\mathsf{succ} \ x)) \end{array}$

concat : $\Pi x, y : El$ nat. El (list x) $\rightarrow El$ (list y) $\rightarrow El$ (list (x + y))

• We have ℓ : *EI* list (succ 0) \vdash concat (succ 0) 0 ℓ nil : *EI* list (succ 0 + 0)

• We have
$$[\vdash \operatorname{succ} 0 + 0 : El \operatorname{nat}] \equiv [\vdash \operatorname{succ} 0 : El \operatorname{nat}]$$

 $\begin{array}{cccc} \mathsf{nat}: \mathit{Set} & +: \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} & |\mathsf{ist}: \mathit{El} \ \mathsf{nat} \to \mathit{Set} \\ \mathsf{0}: \mathit{El} \ \mathsf{nat} & x + \mathsf{0} \hookrightarrow x & \mathsf{nil}: \mathit{El} \ (\mathsf{list} \ \mathsf{0}) \\ \mathsf{succ}: \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} & x + \mathsf{succ} \ \mathit{y} \hookrightarrow \mathsf{succ} \ (x + \mathit{y}) \\ & \mathsf{cons}: \Pi x: \mathit{El} \ \mathsf{nat}. \ \mathit{El} \ \mathsf{list} \ x \to \mathit{El} \ \mathsf{nat} \to \mathit{El} \ (\mathsf{list} \ (\mathsf{succ} \ x)) \end{array}$

concat : $\Pi x, y : El$ nat. El (list x) $\rightarrow El$ (list y) $\rightarrow El$ (list (x + y))

• We have ℓ : *EI* list (succ 0) \vdash concat (succ 0) 0 ℓ nil : *EI* list (succ 0 + 0)

• We have $[\vdash \text{ list } (\text{succ } 0+0) : Set] \equiv [\vdash \text{ list } (\text{succ } 0) : Set]$

 $\begin{array}{cccc} \mathsf{nat}: \mathit{Set} & +: \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} & |\mathsf{ist}: \mathit{El} \ \mathsf{nat} \to \mathit{Set} \\ \mathsf{0}: \mathit{El} \ \mathsf{nat} & x + \mathsf{0} \hookrightarrow x & \mathsf{nil}: \mathit{El} \ \mathsf{(list} \ \mathsf{0}) \\ \mathsf{succ}: \mathit{El} \ \mathsf{nat} \to \mathit{El} \ \mathsf{nat} & x + \mathsf{succ} \ \mathit{y} \hookrightarrow \mathsf{succ} \ (x + \mathit{y}) \\ & \mathsf{cons}: \Pi x: \mathit{El} \ \mathsf{nat}. \ \mathit{El} \ \mathsf{list} \ x \to \mathit{El} \ \mathsf{nat} \to \mathit{El} \ (\mathsf{list} \ (\mathsf{succ} \ x)) \end{array}$

concat : $\Pi x, y : El$ nat. El (list x) $\rightarrow El$ (list y) $\rightarrow El$ (list (x + y))

• We have ℓ : *EI* list (succ 0) \vdash concat (succ 0) 0 ℓ nil : *EI* list (succ 0 + 0)

• We have $[\vdash EI (\text{list } (\text{succ } 0 + 0)) : \text{TYPE}] \equiv [\vdash EI (\text{list } (\text{succ } 0)) : \text{TYPE}]$

- In the signature: replace each user-defined rewrite rule $\ell \hookrightarrow r$ by an equational axiom $\ell = r$
- In the derivations: replace each use of the conversion rule

"from t : A and $A \equiv B$ we get t : B"

by the insertion of a transport

"from t : A and p : A = B we get transp p t : B"

The $\lambda\Pi$ -calculus modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

- \blacksquare In the $\lambda\Pi\text{-calculus}$ modulo theory, we have a hierarchy between
 - objects u : A
 - types A : TYPE
- We need two equalities:
 - one for **objects**
 - one for types

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

Equality between objects

Heterogeneous: to compare objects of different types [McBride, 1999]

• Notation: $u_A \approx_B v$ with u : A, v : B, A : TYPE and B : TYPE

Axioms for reflexivity, symmetry, transitivity

 $\operatorname{refl}_A : \Pi u : A. \ u A \approx_A u$

 $\operatorname{sym}_{A,B}$: Πu : A. Πv : B. $u \mathrel{_A}\approx_B v \to v \mathrel{_B}\approx_A u$

 $\mathsf{trans}_{A,B,C}: \Pi u: A. \ \Pi v: B. \ \Pi w: C. \ u_A \approx_B v \to v_B \approx_C w \to u_A \approx_C w$

Axioms of equality between objects

In the homogeneous case, it is a Leibniz equality

$$\mathsf{leib}_{\mathcal{A}}^{\mathsf{Prf}} \qquad : \quad \Pi u, v : \mathcal{A}. \ \Pi p : u \mathrel_{\mathcal{A}} \approx_{\mathcal{A}} v. \ \Pi P : \mathcal{A} \to \mathsf{El} \ o. \ \mathsf{Prf} \ (P \ u) \to \mathsf{Prf} \ (P \ v)$$

$$\begin{array}{rcl} \mathsf{eqLeib}_{A}^{\mathsf{Prf}} & : & \Pi u, v : A. \ \Pi p : u \ _{A} \approx_{A} v. \ \Pi P : A \to El \ o. \ \Pi t : Prf \ (P \ u). \\ & \mathsf{leib}_{A}^{\mathsf{Prf}} \ u \ v \ p \ P \ t \ _{Prf} \ _{(P \ v)} \approx_{Prf} \ _{(P \ u)} t \end{array}$$

Congruence for application

$$\begin{aligned} \mathsf{app}_{A_1,A_2,B_1,B_2} &: & \Pi t_1 : (\Pi x : A_1 . \ B_1) . \ \Pi t_2 : (\Pi x : A_2 . \ B_2) . \\ & \Pi u_1 : A_1 . \ \Pi u_2 : A_2 . \\ & t_1 \approx t_2 \\ & \to u_1 \approx u_2 \\ & \to t_1 \ u_1 \ B_1 [x \mapsto u_1] \approx B_2 [x \mapsto u_2] \ t_2 \ u_2 \end{aligned}$$

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

Equality between types

• We cannot define an equality between types \hookrightarrow It would have type TYPE \rightarrow TYPE, which is ill-typed

 \blacksquare But we can compare objects of type Set or El o using \approx

Intuition:

Prf
$$a \approx Prf b X$$
but $a \approx b \checkmark$ $El a \approx El b X$ but $a \approx b \checkmark$ $\Pi x : El a_1. Prf a_2 \approx \Pi x : El b_1. Prf b_2 X$ but??Prf $a_1 \rightarrow Prf a_2 \approx Prf b_1 \rightarrow Prf b_2 X$ but??

Transforming types

• Representing dependent types with \rightsquigarrow_d , \Rightarrow_d , π or \forall whenever possible

$$\nu(Set) := Set \qquad \nu(Prf \ a) := Prf \ a \qquad \nu(El \ a) := El \ a$$

$$\nu(Ix : A. \ B) := \begin{cases} Prf \ (a \Rightarrow_d (\lambda x : Prf \ a. \ b)) & \text{if } \nu(A) = Prf \ a \text{ and } \nu(B) = Prf \ b \\ El \ (a \rightsquigarrow_d (\lambda x : El \ a. \ b)) & \text{if } \nu(A) = El \ a \text{ and } \nu(B) = El \ b \\ Prf \ (\forall \ a \ (\lambda x : El \ a. \ b)) & \text{if } \nu(A) = El \ a \text{ and } \nu(B) = Prf \ b \\ El \ (\pi \ a \ (\lambda x : Prf \ a. \ b)) & \text{if } \nu(A) = Prf \ a \text{ and } \nu(B) = Prf \ b \\ El \ (\pi \ a \ (\lambda x : Prf \ a. \ b)) & \text{if } \nu(A) = Prf \ a \text{ and } \nu(B) = Prf \ b \\ Ix : \nu(A). \ \nu(B) & \text{otherwise} \end{cases}$$

• Using the four rewrite rules of Σ_{pre} , we have $A \equiv \nu(A)$

Small types

Small types: types A such that $\nu(A)$ is defined and generated by

 $S ::= Set \mid S \to S$ $\mathcal{P} ::= Prf \ a \mid \mathcal{P} \to S \mid \Pi z : S. \mathcal{P}$ $\mathcal{E} ::= El \ b \mid \mathcal{E} \to S \mid \Pi z : S. \mathcal{E}$

■ Set \rightarrow (Set \rightarrow Set) \checkmark Prf $a \rightarrow$ Prf b convertible with Prf $(a \Rightarrow_d (\lambda z : Prf a. b)) \checkmark$ Prf $a \rightarrow$ Set \rightarrow Prf $b \checkmark$

In practice, all types are small

• Equality $\kappa(A, B)$ between small types A et B

$$\kappa(Prf \ a_1, Prf \ a_2) \coloneqq a_1 \approx a_2 \qquad \kappa(El \ a_1, El \ a_2) \coloneqq a_1 \approx a_2 \qquad \kappa(S, S) \coloneqq \text{True if } S \in S$$
$$\kappa(T_1 \to S, T_2 \to S) \coloneqq \kappa(T_1, T_2) \text{ if } S \in S$$
$$\kappa(\Pi z : S. \ T_1, \Pi z : S. \ T_2) \coloneqq \Pi z : S. \ \kappa(T_1, T_2) \text{ if } S \in S$$

Example

 $\kappa(\Pi x: Set. Prf \ P \rightarrow Prf \ Q, \Pi x: Set. Prf \ R) := \Pi x: Set. (P \Rightarrow_d \lambda z: P. Q) \approx R$

Axioms of equality between small types

Functional extensionality with different domains

$$\begin{aligned} \mathsf{fun}_{A_1,A_2,B_1,B_2} &: & \mathsf{\Pi} f_1 : (\mathsf{\Pi} x : A_1. \ B_1). \ \mathsf{\Pi} f_2 : (\mathsf{\Pi} y : A_2. \ B_2). \\ & & \kappa(A_1,A_2) \\ & & \to \mathsf{\Pi} x : A_1. \ \mathsf{\Pi} y : A_2. \ (x \approx y) \to (f_1 \ x \approx f_2 \ y) \\ & & \to f_1 \approx f_2 \end{aligned}$$

• If A is generated by S, we simply have

$$\begin{aligned} \mathsf{fun}_{A,B_1,B_2} &: & \mathsf{\Pi} f_1 : (\mathsf{\Pi} x : A. \ B_1). \ \mathsf{\Pi} f_2 : (\mathsf{\Pi} x : A. \ B_2). \\ & & (\mathsf{\Pi} x : A. \ f_1 \ x \approx \ f_2 \ x) \\ & & \to f_1 \approx \ f_2 \end{aligned}$$

The $\lambda\Pi$ -calculus modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

• Let $\Gamma \vdash t : A$ and $\Gamma \vdash p : \kappa(A, B)$ with A and B small types.

We can build a term transp p t such that:

- $-\Gamma \vdash \text{transp } p \ t : B$
- $-\Gamma \vdash \text{transp } p \ t \ _{B} \approx_{A} t$

■ Idea of the translation: insert transports in the terms each time CONV is used

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

Translation

Translation of terms $\overline{t} \triangleleft t$ (" \overline{t} is a translation of t")

$$\frac{\overline{t} \triangleleft t}{x \triangleleft x} \qquad \frac{\overline{t} \triangleleft t}{c \triangleleft c} \qquad \frac{\overline{t} \triangleleft t}{(\lambda x : \overline{t} . \ \overline{u}) \triangleleft (\lambda x : t . \ u)} \qquad \frac{\overline{t} \triangleleft t}{(\Pi x : \overline{t} . \ \overline{u}) \triangleleft (\Pi x : t . \ u)}$$
$$\frac{\overline{t} \triangleleft t}{(\overline{t} \ \overline{u}) \triangleleft (t \ u)} \qquad \frac{\overline{t} \triangleleft t}{(\overline{t} \ \operatorname{rangp} p \ \overline{t}) \triangleleft t}$$

No more conversion rules!

Translation of contexts

$$\frac{\bar{\Gamma} \triangleleft \Gamma \quad \bar{A} \triangleleft A}{(\bar{\Gamma}, x : \bar{A}) \triangleleft (\Gamma, x : A)}$$

Equal translations

If $ar{t}$ and $ar{t}'$ are two translations of t, then $ar{t} pprox ar{t}'$

Switching translations

If $\overline{\Gamma} \vdash \overline{t} : \overline{A}$ and $\overline{\Gamma} \vdash \overline{A}' : TYPE$, then there exists $\overline{t}' \triangleleft t$ such that $\overline{\Gamma} \vdash \overline{t}' : \overline{A}'$

$$\frac{\overline{\Sigma} \triangleleft \Sigma \quad \overline{A} \triangleleft A}{(\overline{\Sigma}, c : \overline{A}) \triangleleft (\Sigma, c : A)}$$

When $\ell, r : A$ with free variables $\boldsymbol{x} : \boldsymbol{B}$

$$\frac{\overline{\Sigma} \triangleleft \Sigma \quad \overline{\ell} \triangleleft \ell \quad \overline{r} \triangleleft r \quad \overline{B} \triangleleft B \quad \overline{A} \triangleleft A}{(\overline{\Sigma}, eq_{\ell r} : \Pi x : \overline{B} \cdot \overline{\ell}_{\overline{A}} \approx_{\overline{A}} \overline{r}) \triangleleft (\Sigma, \ell \hookrightarrow r)}$$

No more rewrite rules!

The $\lambda\Pi\text{-calculus}$ modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

Let a theory $\mathcal{T} = (\Sigma_{pre} \cup \Sigma_{\mathcal{T}})$ a theory with prelude encoding.

Suppose that all types are small.

• There exists a signature $\overline{\Sigma}_{\mathcal{T}} \triangleleft \Sigma_{\mathcal{T}}$ such that $\mathcal{T}^{ax} = (\Sigma_{pre} \cup \Sigma_{eq} \cup \overline{\Sigma}_{\mathcal{T}})$ is a theory

- $-\Sigma_{pre}$ remains unchanged
- $-\Sigma_{eq}$ is the signature defining the equalities

For every $A \equiv B$ in \mathcal{T} with A and B small types, there exists some $p : \kappa(\overline{A}, \overline{B})$ in \mathcal{T}^{ax}

For every $\Gamma \vdash t : A$ in \mathcal{T} , we have $\overline{\Gamma} \vdash \overline{t} : \overline{A}$ in \mathcal{T}^{ax}

- Σ_T is a fully axiomatized user-defined signature
 → The only rewrite rules in T^{ax} are the 4 of the prelude encoding
- Conservativity: \mathcal{T} is conservative over \mathcal{T}^{ax}
- **Relative consistency:** if \mathcal{T}^{ax} is **consistent** then \mathcal{T} is also consistent

The $\lambda\Pi$ -calculus modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

- Logical framework
 - Theories can be defined by users using typed constants and rewrite rules
 - Many theories can be expressed
 - Examples: Predicate Logic, Calculus of Constructions
- Minimal logical framework
 - Finite hierarchy of sorts and no identity types
 - Heterogeneous equality between objects
 - Difficult to define an equality between types

- Considered theories
 - Prelude encoding
 - Small types
 - \hookrightarrow In practice, always the case
- User-defined rewrite rules can be replaced by equational axioms
- Application: interoperability between proof systems via DEDUKTI