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A proof of 2 + 2 = 4

Axioms
x + succ y = succ (x + y)

x + 0 = x

Deduction

2 + 2 := succ2 0 + succ2 0
= succ (succ2 0 + succ 0)
= succ2 (succ2 0 + 0)
= succ2 (succ2 0)
:= 4
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Another proof of 2 + 2 = 4

For Poincaré, deriving 2 + 2 = 4 is not a meaningful proof, but a simple verification

Rewrite rules
x + succ y ↪→ succ (x + y)

x + 0 ↪→ x

Computation

2 + 2 := succ2 0 + succ2 0
≡ succ (succ2 0 + succ 0)
≡ succ2 (succ2 0 + 0)
≡ succ2 (succ2 0)
:= 4

so 2 + 2 = 4 using the reflexivity of equality
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Equational axioms or rewrite rules?

Logical systems Logical systems
with equational axioms with rewrite rules

x + succ y = succ (x + y) x + succ y ↪→ succ (x + y)
x + 0 = x x + 0 ↪→ x

We prove that 2 + 2 = 4 We compute that (2 + 2 = 4) ≡ (4 = 4)

If ℓ : list (2 + 2) If ℓ : list (2 + 2)
then ℓ : list 4

with e : 2 + 2 = 4 and
transp : (2 + 2 = 4) → list (2 + 2) → list 4
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The λΠ-calculus modulo theory

The λΠ-calculus modulo theory [Cousineau and Dowek, 2007]
= λ-calculus
+ dependent types
+ rewrite rules

Logical framework
– Possible to express many theories
– Application: proof interoperability
– Implemented in Dedukti [Assaf et al, 2016]

User-friendly framework
– Deduction → user
– Computation → system
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In this work

Theoretical motivation: Is a result provable with rewrite rules also provable with axioms?

Practical motivation: Interoperability between proof systems via Dedukti

Contribution [FoSSaCS 2024]

Rewrite rules can be replaced by equational axioms
in the λΠ-calculus modulo theory with a prelude encoding
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Related work

Deduction modulo theory = first-order predicate logic + rewrite rules
↪→ Rewrite rules can be replaced by axioms [Dowek et al, 2003]

Translations of extensional type theory into intensional type theory
[Oury, 2005, Winterhalter et al, 2019]

– In extensional type theory, ℓ = r entails ℓ ≡ r
– In the λΠ-calculus modulo theory, ℓ ↪→ r entails ℓ ≡ r
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The λΠ-calculus modulo theory

Syntax

Sorts s ::= TYPE | KIND

Terms t, u, A, B ::= c | x | s | Πx : A. B | λx : A. t | t u
Signatures Σ ::= ⟨⟩ | Σ, c : A | Σ, ℓ ↪→ r
Contexts Γ ::= ⟨⟩ | Γ, x : A

Πx : A. B written A → B if x not in B

Careful!
– No identity types
– Finite hierarchy of sorts TYPE : KIND
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Theories of the λΠ-calculus modulo theory

↪→βΣ is generated by β-reduction and the rewrite rules of Σ

Theory T defined by a signature Σ such that:
– for each ℓ ↪→ r ∈ Σ, the constants that occur in ℓ and r belong to Σ
– the relation ↪→βΣ is confluent
– each rule of Σ preserves typing
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Typing rules

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s
Γ ⊢ Πx : A. B : s

[Prod]

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s Γ, x : A ⊢ t : B
Γ ⊢ λx : A. t : Πx : A. B

[Abs]

Γ ⊢ t : Πx : A. B Γ ⊢ u : A
Γ ⊢ t u : B[x 7→ u]

[App]

12/41



Convertibility rules

Conversion rule

Γ ⊢ t : A (Γ ⊢ A : s) ≡ (Γ ⊢ B : s)
Γ ⊢ t : B

[Conv]

Convertibility rules for building (Γ ⊢ u : A) ≡ (∆ ⊢ v : B)
– Generated by β-reduction and the rewrite rules of Σ
– Closed by context, reflexive, symmetric and transitive
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Encoding of the notions of proposition and proof

Encoding Σpre of the notions of proposition and proof [Blanqui et al, 2023]
↪→ Always used in practice

Universe of sorts Set with injection El : Set → TYPE
↪→ Sort of propositions o, proposition P of type El o

Universe of propositions El o with injection Prf : El o → TYPE
↪→ A proof of P is of type Prf P
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Rewrite rules of the encoding

Desired behaviour:
– Functionality El (a⇝ b) ↪→ El a → El b
– Implication Prf (a ⇒ b) ↪→ Prf a → Prf b
– Universal quantifier Prf (∀ a b) ↪→ Πz : El a. Prf (b z)

Four constants and rewrite rules

El (a ⇝d b) ↪→ Πz : El a. El (b z)

Prf (a ⇒d b) ↪→ Πz : Prf a. Prf (b z)

Prf (∀ a b) ↪→ Πz : El a. Prf (b z)

El (π a b) ↪→ Πz : Prf a. El (b z)
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Example: natural numbers and lists

nat : Set + : El nat → El nat → El nat list : El nat → Set
0 : El nat x + 0 ↪→ x nil : El (list 0)
succ : El nat → El nat x + succ y ↪→ succ (x + y)

cons : Πx : El nat. El list x → El nat → El (list (succ x))

concat : Πx , y : El nat. El (list x) → El (list y) → El (list (x + y))

We have ℓ : El list (succ 0) ⊢ concat (succ 0) 0 ℓ nil : El list (succ 0 + 0)

We have [⊢ succ 0 + 0 : El nat] ≡ [⊢ succ 0 : El nat]
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How to replace user-defined rewrite rules by equational axioms?

In the signature: replace each user-defined rewrite rule ℓ ↪→ r by an equational axiom
ℓ = r

In the derivations: replace each use of the conversion rule

“from t : A and A ≡ B we get t : B”

by the insertion of a transport

“from t : A and p : A = B we get transp p t : B”
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Equality? Equalities!

In the λΠ-calculus modulo theory, we have a hierarchy between
– objects u : A
– types A : TYPE

We need two equalities:
– one for objects
– one for types

20/41



Outline

The λΠ-calculus modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

Conclusion

21/41



Equality between objects

Heterogeneous: to compare objects of different types [McBride, 1999]

Notation: u A≈B v with u : A, v : B, A : TYPE and B : TYPE

Axioms for reflexivity, symmetry, transitivity

reflA : Πu : A. u A≈A u

symA,B : Πu : A. Πv : B. u A≈B v → v B≈A u

transA,B,C : Πu : A. Πv : B. Πw : C . u A≈B v → v B≈C w → u A≈C w

22/41



Axioms of equality between objects

In the homogeneous case, it is a Leibniz equality

leibPrf
A : Πu, v : A. Πp : u A≈A v . ΠP : A → El o. Prf (P u) → Prf (P v)

eqLeibPrf
A : Πu, v : A. Πp : u A≈A v . ΠP : A → El o. Πt : Prf (P u).

leibPrf
A u v p P t Prf (P v)≈Prf (P u) t

Congruence for application

appA1,A2,B1,B2 : Πt1 : (Πx : A1. B1). Πt2 : (Πx : A2. B2).
Πu1 : A1. Πu2 : A2.

t1 ≈ t2

→ u1 ≈ u2

→ t1 u1 B1[x 7→u1]≈B2[x 7→u2] t2 u2
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Equality between types

We cannot define an equality between types
↪→ It would have type TYPE → TYPE → TYPE, which is ill-typed

But we can compare objects of type Set or El o using ≈

Intuition:

Prf a ≈ Prf b ✗ but a ≈ b ✓

El a ≈ El b ✗ but a ≈ b ✓

Πx : El a1. Prf a2 ≈ Πx : El b1. Prf b2 ✗ but ??
Prf a1 → Prf a2 ≈ Prf b1 → Prf b2 ✗ but ??
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Transforming types

Representing dependent types with ⇝d , ⇒d , π or ∀ whenever possible

ν(Set) := Set ν(Prf a) := Prf a ν(El a) := El a

ν(Πx : A. B) :=



Prf (a ⇒d (λx : Prf a. b)) if ν(A) = Prf a and ν(B) = Prf b
El (a⇝d (λx : El a. b)) if ν(A) = El a and ν(B) = El b
Prf (∀ a (λx : El a. b)) if ν(A) = El a and ν(B) = Prf b
El (π a (λx : Prf a. b)) if ν(A) = Prf a and ν(B) = El b
Πx : ν(A). ν(B) otherwise

Using the four rewrite rules of Σpre , we have A ≡ ν(A)
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Small types

Small types: types A such that ν(A) is defined and generated by

S ::= Set | S → S

P ::= Prf a | P → S | Πz : S. P

E ::= El b | E → S | Πz : S. E

Set → (Set → Set) ✓

Prf a → Prf b convertible with Prf (a ⇒d (λz : Prf a. b)) ✓

Prf a → Set → Prf b ✗

In practice, all types are small
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Equality between small types

Equality κ(A, B) between small types A et B

κ(Prf a1, Prf a2) := a1 ≈ a2 κ(El a1, El a2) := a1 ≈ a2 κ(S, S) := True if S ∈ S

κ(T1 → S, T2 → S) := κ(T1, T2) if S ∈ S

κ(Πz : S. T1, Πz : S. T2) := Πz : S. κ(T1, T2) if S ∈ S

Example

κ(Πx : Set. Prf P → Prf Q, Πx : Set. Prf R) := Πx : Set. (P ⇒d λz : P. Q) ≈ R
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Axioms of equality between small types

Functional extensionality with different domains

funA1,A2,B1,B2 : Πf1 : (Πx : A1. B1). Πf2 : (Πy : A2. B2).
κ(A1, A2)
→ Πx : A1. Πy : A2. (x ≈ y) → (f1 x ≈ f2 y)
→ f1 ≈ f2

If A is generated by S, we simply have

funA,B1,B2 : Πf1 : (Πx : A. B1). Πf2 : (Πx : A. B2).
(Πx : A. f1 x ≈ f2 x)
→ f1 ≈ f2
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Transports

Let Γ ⊢ t : A and Γ ⊢ p : κ(A, B) with A and B small types.

We can build a term transp p t such that:
– Γ ⊢ transp p t : B
– Γ ⊢ transp p t B≈A t

Idea of the translation: insert transports in the terms each time Conv is used
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Translation

Translation of terms t ◁ t (“t is a translation of t”)

x ◁ x c ◁ c
t ◁ t u ◁ u

(λx : t. u) ◁ (λx : t. u)
t ◁ t u ◁ u

(Πx : t. u) ◁ (Πx : t. u)

t ◁ t u ◁ u
(t u) ◁ (t u)

t ◁ t
(transp p t) ◁ t

No more conversion rules!

Translation of contexts

⟨⟩ ◁ ⟨⟩
Γ ◁ Γ A ◁ A

(Γ, x : A) ◁ (Γ, x : A)
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Key results on the translation

Equal translations

If t and t ′ are two translations of t, then t ≈ t ′

Switching translations

If Γ ⊢ t : A and Γ ⊢ A′ : TYPE, then there exists t ′ ◁ t such that Γ ⊢ t ′ : A′

34/41



Translation of signatures

⟨⟩ ◁ ⟨⟩
Σ ◁ Σ A ◁ A

(Σ, c : A) ◁ (Σ, c : A)

When ℓ, r : A with free variables x : B

Σ ◁ Σ ℓ ◁ ℓ r ◁ r B ◁ B A ◁ A
(Σ, eqℓr : Πx : B. ℓ A≈A r) ◁ (Σ, ℓ ↪→ r)

No more rewrite rules!

35/41



Outline

The λΠ-calculus modulo theory

Syntax and type system

Prelude encoding

Equality

Equality between objects

Equality between types

Replacing rewrite rules by equational axioms

Translation

Main result

Conclusion

36/41



From rewrite rules to axioms

Let a theory T = (Σpre ∪ ΣT ) a theory with prelude encoding.

Suppose that all types are small.

There exists a signature ΣT ◁ ΣT such that T ax = (Σpre ∪ Σeq ∪ ΣT ) is a theory
– Σpre remains unchanged
– Σeq is the signature defining the equalities

For every A ≡ B in T with A and B small types, there exists some p : κ(A, B) in T ax

For every Γ ⊢ t : A in T , we have Γ ⊢ t : A in T ax
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Axiomatized theory T ax

ΣT is a fully axiomatized user-defined signature
↪→ The only rewrite rules in T ax are the 4 of the prelude encoding

Conservativity: T is conservative over T ax

Relative consistency: if T ax is consistent then T is also consistent
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The λΠ-calculus modulo theory

Logical framework
– Theories can be defined by users using typed constants and rewrite rules
– Many theories can be expressed
– Examples: Predicate Logic, Calculus of Constructions

Minimal logical framework
– Finite hierarchy of sorts and no identity types
– Heterogeneous equality between objects
– Difficult to define an equality between types
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Replacing rewrite rules by equational axioms

Considered theories
– Prelude encoding
– Small types
↪→ In practice, always the case

User-defined rewrite rules can be replaced by equational axioms

Application: interoperability between proof systems via Dedukti

41/41


	The -calculus modulo theory
	Syntax and type system
	Prelude encoding

	Equality
	Equality between objects
	Equality between types

	Replacing rewrite rules by equational axioms
	Translation
	Main result

	Conclusion

