Replacing Rewrite Rules by Equational Axioms in the $\lambda \Pi$-Calculus Modulo Theory
 LMF PhD Seminar

Thomas Traversié
joint work with Valentin Blot, Gilles Dowek and Théo Winterhalter

May 28th 2024

A proof of $2+2=4$

- Axioms

$$
\begin{gathered}
x+\operatorname{succ} y=\operatorname{succ}(x+y) \\
x+0=x
\end{gathered}
$$

- Deduction

$$
\begin{aligned}
2+2 & :=\operatorname{succ}^{2} 0+\operatorname{succ}^{2} 0 \\
& =\operatorname{succ}\left(\operatorname{succ}^{2} 0+\operatorname{succ} 0\right) \\
& =\operatorname{succ}^{2}\left(\operatorname{succ}^{2} 0+0\right) \\
& =\operatorname{succ}^{2}\left(\operatorname{succ}^{2} 0\right) \\
& :=4
\end{aligned}
$$

Another proof of $2+2=4$

- For Poincaré, deriving $2+2=4$ is not a meaningful proof, but a simple verification
- Rewrite rules

$$
\begin{gathered}
x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y) \\
x+0 \hookrightarrow x
\end{gathered}
$$

- Computation

$$
\begin{aligned}
2+2 & :=\operatorname{succ}^{2} 0+\operatorname{succ}^{2} 0 \\
& \equiv \operatorname{succ}\left(\operatorname{succ}^{2} 0+\operatorname{succ} 0\right) \\
& \equiv \operatorname{succ}^{2}\left(\operatorname{succ}^{2} 0+0\right) \\
& \equiv \operatorname{succ}^{2}\left(\operatorname{succ}^{2} 0\right) \\
& :=4
\end{aligned}
$$

so $2+2=4$ using the reflexivity of equality

Equational axioms or rewrite rules?

Logical systems
with equational axioms

$$
\begin{gathered}
x+\operatorname{succ} y=\operatorname{succ}(x+y) \\
x+0=x
\end{gathered}
$$

We prove that $2+2=4$

Logical systems with rewrite rules

$$
\begin{gathered}
x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y) \\
x+0 \hookrightarrow x
\end{gathered}
$$

We compute that $(2+2=4) \equiv(4=4)$

Equational axioms or rewrite rules?

Logical systems

with equational axioms

$$
\begin{gathered}
x+\operatorname{succ} y=\operatorname{succ}(x+y) \\
x+0=x
\end{gathered}
$$

We prove that $2+2=4$

$$
\text { If } \ell: \text { list }(2+2)
$$

but not necessarily ℓ : list 4

Logical systems with rewrite rules

$$
\begin{gathered}
x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y) \\
x+0 \hookrightarrow x
\end{gathered}
$$

We compute that $(2+2=4) \equiv(4=4)$
If $\ell:$ list $(2+2)$
then ℓ : list 4

Equational axioms or rewrite rules?

Logical systems

with equational axioms

$$
\begin{gathered}
x+\operatorname{succ} y=\operatorname{succ}(x+y) \\
x+0=x
\end{gathered}
$$

We prove that $2+2=4$

$$
\text { If } \ell: \text { list }(2+2)
$$

then transp $e \ell$: list 4 with $e: 2+2=4$ and
transp : $(2+2=4) \rightarrow$ list $(2+2) \rightarrow$ list 4

Logical systems with rewrite rules

$$
\begin{gathered}
x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y) \\
x+0 \hookrightarrow x
\end{gathered}
$$

We compute that $(2+2=4) \equiv(4=4)$
If $\ell:$ list $(2+2)$ then ℓ : list 4

The $\lambda \Pi$-calculus modulo theory

- The $\lambda \Pi$-calculus modulo theory [Cousineau and Dowek, 2007]
$=\lambda$-calculus
+ dependent types
+ rewrite rules
- Logical framework
- Possible to express many theories
- Application: proof interoperability
- Implemented in Dedukti [Assaf et al, 2016]
- User-friendly framework
- Deduction \rightarrow user
- Computation \rightarrow system

In this work

- Theoretical motivation: Is a result provable with rewrite rules also provable with axioms?
- Practical motivation: Interoperability between proof systems via DEDUKTI
- Contribution [FoSSaCS 2024]

Rewrite rules can be replaced by equational axioms in the $\lambda \Pi$-calculus modulo theory with a prelude encoding

Related work

- Deduction modulo theory $=$ first-order predicate logic + rewrite rules
\hookrightarrow Rewrite rules can be replaced by axioms [Dowek et al, 2003]
- Translations of extensional type theory into intensional type theory [Oury, 2005, Winterhalter et al, 2019]
- In extensional type theory, $\ell=r$ entails $\ell \equiv r$
- In the $\lambda \Pi$-calculus modulo theory, $\ell \hookrightarrow r$ entails $\ell \equiv r$

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding

Equality

Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result

Conclusion

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding

Equality

Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result

Conclusion

Outline

The $\lambda \Pi$-calculus modulo theory

Syntax and type system

Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result
Conclusion

The $\lambda \Pi$-calculus modulo theory

- Syntax

Sorts	$s::=$ TYPE \mid KIND
Terms	$t, u, A, B::=c\|x\| s\|\Pi x: A . B\| \lambda x: A . t \mid t u$
Signatures	$\Sigma::=\langle \rangle\|\Sigma, c: A\| \Sigma, \ell \hookrightarrow r$
Contexts	$\Gamma::=\langle \rangle \mid \Gamma, x: A$

$\Pi x: A$. B written $A \rightarrow B$ if x not in B

- Careful!
- No identity types
- Finite hierarchy of sorts TYPE : KIND

Theories of the $\lambda \Pi$-calculus modulo theory

■ $\hookrightarrow_{\beta \Sigma}$ is generated by β-reduction and the rewrite rules of Σ

- Theory \mathcal{T} defined by a signature Σ such that:
- for each $\ell \hookrightarrow r \in \Sigma$, the constants that occur in ℓ and r belong to Σ
- the relation $\hookrightarrow_{\beta \Sigma}$ is confluent
- each rule of Σ preserves typing

Typing rules

$$
\begin{gathered}
\frac{\Gamma \vdash A: \operatorname{TYPE} \quad \Gamma, x: A \vdash B: s}{\Gamma \vdash \Pi x: A . B: s}[\mathrm{PROD}] \\
\frac{\Gamma \vdash A: \text { TYPE } \quad \Gamma, x: A \vdash B: s \quad \Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A . t: \Pi x: A . B}[\mathrm{ABS}] \\
\frac{\Gamma \vdash t: \Pi x: A . B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B[x \mapsto u]}[\mathrm{APP}]
\end{gathered}
$$

Convertibility rules

- Conversion rule

$$
\frac{\Gamma \vdash t: A \quad(\Gamma \vdash A: s) \equiv(\Gamma \vdash B: s)}{\Gamma \vdash t: B}[\mathrm{CoNv}]
$$

- Convertibility rules for building $(\Gamma \vdash u: A) \equiv(\Delta \vdash v: B)$
- Generated by β-reduction and the rewrite rules of Σ
- Closed by context, reflexive, symmetric and transitive

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result
Conclusion

Encoding of the notions of proposition and proof

- Encoding $\Sigma_{\text {pre }}$ of the notions of proposition and proof [Blanqui et al, 2023]
\hookrightarrow Always used in practice
- Universe of sorts Set with injection El : Set \rightarrow TYPE \hookrightarrow Sort of propositions o, proposition P of type El o
- Universe of propositions El o with injection Prf : El o \rightarrow TYPE \hookrightarrow A proof of P is of type Prf P

Rewrite rules of the encoding

- Desired behaviour:
- Functionality El $(a \rightsquigarrow b) \hookrightarrow E l a \rightarrow E I b$
- Implication $\operatorname{Prf}(a \Rightarrow b) \hookrightarrow \operatorname{Prf} a \rightarrow \operatorname{Prf} b$
- Universal quantifier $\operatorname{Prf}(\forall a b) \hookrightarrow \Pi z: E l a . \operatorname{Prf}(b z)$
- Four constants and rewrite rules

$$
\begin{gathered}
E I\left(a \rightsquigarrow_{d} b\right) \hookrightarrow \Pi z: E l a . E I(b z) \\
\operatorname{Prf}\left(a \Rightarrow_{d} b\right) \hookrightarrow \Pi z: \operatorname{Prf} \text { a. } \operatorname{Prf}(b z) \\
\operatorname{Prf}(\forall a b) \hookrightarrow \Pi z: E l a . \operatorname{Prf}(b z) \\
E I(\pi a b) \hookrightarrow \Pi z: \operatorname{Prf} a . E I(b z)
\end{gathered}
$$

Example: natural numbers and lists

```
nat: Set
0 : El nat
succ : \(E l\) nat \(\rightarrow E /\) nat
\(+:\) El nat \(\rightarrow\) El nat \(\rightarrow E /\) nat
\(x+0 \hookrightarrow x\)
\(x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y)\)
list: El nat \(\rightarrow\) Set
cons : \(\Pi x: E I\) nat. \(E l\) list \(x \rightarrow E /\) nat \(\rightarrow E I(\) list \((\operatorname{succ} x))\)
concat : \(\Pi x, y: E l\) nat. \(E I(\) list \(x) \rightarrow E I(\) list \(y) \rightarrow E I(\) list \((x+y))\)
```

- We have $\ell: E l$ list (succ 0$) \vdash$ concat (succ 0$) 0 \ell$ nil : El list (succ $0+0)$
- We have $[\vdash \operatorname{succ} 0+0: E /$ nat $] \equiv[\vdash$ succ $0: E /$ nat $]$

Example: natural numbers and lists

```
nat: Set
0 : El nat
succ : \(E l\) nat \(\rightarrow E /\) nat
\(+:\) El nat \(\rightarrow\) El nat \(\rightarrow E /\) nat
\(x+0 \hookrightarrow x\)
\(x+\operatorname{succ} y \hookrightarrow \operatorname{succ}(x+y)\)
list: El nat \(\rightarrow\) Set
cons : \(\Pi x: E I\) nat. \(E l\) list \(x \rightarrow E /\) nat \(\rightarrow E I(\) list \((\operatorname{succ} x))\)
concat : \(\Pi x, y: E l\) nat. \(E I(\) list \(x) \rightarrow E I(\) list \(y) \rightarrow E I(\) list \((x+y))\)
```

- We have $\ell: E l$ list (succ 0$) \vdash$ concat (succ 0$) 0 \ell$ nil : El list (succ $0+0)$
$■$ We have $[\vdash$ list (succ $0+0):$ Set $] \equiv[\vdash$ list (succ 0$):$ Set $]$

Example: natural numbers and lists

```
nat:Set
0:El nat
succ: El nat }->\mathrm{ El nat
+: El nat }->\mathrm{ El nat }->\mathrm{ El nat
x+0\hookrightarrowx
x+\operatorname{succ}y\hookrightarrow\operatorname{succ}(x+y)
list: El nat }->\mathrm{ Set
cons: \Pix : El nat. El list x }->E/\mathrm{ nat }->E|(\mathrm{ list (succ x))
concat: }\Pix,y:E| nat. EI (list x)->EI (list y) ->EI (list (x+y))
```

- We have $\ell: E l$ list $(\operatorname{succ} 0) \vdash \operatorname{concat}(\operatorname{succ} 0) 0 \ell$ nil : El list (succ $0+0)$
- We have $[\vdash E /($ list $(\operatorname{succ} 0+0)):$ TYPE $] \equiv[\vdash E /($ list $(\operatorname{succ} 0)):$ TYPE $]$

How to replace user-defined rewrite rules by equational axioms?

■ In the signature: replace each user-defined rewrite rule $\ell \hookrightarrow r$ by an equational axiom $\ell=r$

- In the derivations: replace each use of the conversion rule

$$
\text { "from } t: A \text { and } A \equiv B \text { we get } t: B "
$$

by the insertion of a transport

$$
\text { "from } t: A \text { and } p: A=B \text { we get transp } p t: B \text { " }
$$

Outline

The $\lambda \Pi$-calculus modulo theory Syntax and type system
Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result
Conclusion

Equality? Equalities!

- In the $\lambda \Pi$-calculus modulo theory, we have a hierarchy between
- objects u : A
- types A : TYPE
- We need two equalities:
- one for objects
- one for types

Outline

The $\lambda \Pi$-calculus modulo theory

```
Syntax and type system
Prelude encoding
```

Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result
Conclusion

Equality between objects

- Heterogeneous: to compare objects of different types [McBride, 1999]

■ Notation: $u_{A} \widetilde{\sim}_{B} v$ with $u: A, v: B, A:$ TYPE and $B:$ TYPE

- Axioms for reflexivity, symmetry, transitivity

$$
\begin{aligned}
& \operatorname{refl}_{A}: \Pi u: A . u_{A} \approx_{A} u \\
& \operatorname{sym}_{A, B}: \Pi u: A . \Pi v: B . u_{A} \approx_{B} v \rightarrow v_{B} \approx_{A} u \\
& \operatorname{trans}_{A, B, C}: \Pi u: A . \Pi v: B . \Pi w: C \cdot u_{A} \approx_{B} v \rightarrow v B \approx_{C} w \rightarrow u_{A} \approx_{C} w
\end{aligned}
$$

Axioms of equality between objects

- In the homogeneous case, it is a Leibniz equality

$$
\begin{array}{ll}
\text { leib }_{A}^{\operatorname{Prf}} & : \Pi u, v: A . \Pi p: u_{A} \approx_{A} v . \Pi P: A \rightarrow E l o . \operatorname{Prf}(P u) \rightarrow \operatorname{Prf}(P v) \\
\text { eqLeib }_{A}^{\operatorname{Prf}} \quad: & \Pi u, v: A . \Pi_{p}: u_{A} \approx_{A} v . \Pi P: A \rightarrow E l o . \Pi t: \operatorname{Prf}(P u) \\
& \operatorname{leib}_{A}^{\operatorname{Prf}} u v p P t_{\operatorname{Prf}(P v)} \approx_{\operatorname{Prf}(P u)} t
\end{array}
$$

- Congruence for application

$$
\begin{aligned}
\operatorname{app}_{A_{1}, A_{2}, B_{1}, B_{2}}: & \Pi t_{1}:\left(\Pi x: A_{1} \cdot B_{1}\right) . \Pi t_{2}:\left(\Pi x: A_{2} . B_{2}\right) . \\
& \Pi u_{1}: A_{1} \cdot \Pi u_{2}: A_{2} \\
& t_{1} \approx t_{2} \\
& \rightarrow u_{1} \approx u_{2} \\
& \rightarrow t_{1} u_{1} B_{1}\left[x \mapsto u_{1}\right] \approx_{B_{2}\left[x \mapsto u_{2}\right]} t_{2} u_{2}
\end{aligned}
$$

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding
Equality

```
Equality between objects
```

Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result
Conclusion

Equality between types

- We cannot define an equality between types
\hookrightarrow It would have type TYPE \rightarrow TYPE \rightarrow TYPE, which is ill-typed
- But we can compare objects of type Set or El o using \approx
- Intuition:

$$
\begin{aligned}
\text { Prf } a & \approx \operatorname{Prf} b x & \text { but } & a \approx b \checkmark \\
E l a & \approx E / b x & \text { but } & a \approx b \checkmark \\
\Pi x: E I a_{1} . \operatorname{Prf} a_{2} & \approx \Pi x: E I b_{1} . \operatorname{Prf} b_{2} x & \text { but } & ? ? \\
\operatorname{Prf} a_{1} \rightarrow \operatorname{Prf} a_{2} & \approx \operatorname{Prf} b_{1} \rightarrow \operatorname{Prf} b_{2} x & \text { but } & ? ?
\end{aligned}
$$

Transforming types

■ Representing dependent types with $\rightsquigarrow_{d}, \Rightarrow_{d}, \pi$ or \forall whenever possible

$$
\begin{gathered}
\nu(\text { Set }):=\operatorname{Set} \quad \nu(\operatorname{Prf} a):=\operatorname{Prf} a \quad \nu(E l a):=E l a \\
\nu(\Pi x: A . B):= \begin{cases}\operatorname{Prf}\left(a \Rightarrow_{d}(\lambda x: \operatorname{Prf} a . b)\right) & \text { if } \nu(A)=\operatorname{Prf} a \text { and } \nu(B)=\operatorname{Prf} b \\
E l\left(a \rightsquigarrow_{d}(\lambda x: E l a . b)\right) & \text { if } \nu(A)=E l a \text { and } \nu(B)=E l b \\
\operatorname{Prf}(\forall a(\lambda x: E l a . b)) & \text { if } \nu(A)=E l \text { a and } \nu(B)=\operatorname{Prf} b \\
E l(\pi a(\lambda x: \operatorname{Prf} a . b)) & \text { if } \nu(A)=\operatorname{Prf} a \text { and } \nu(B)=E l b \\
\Pi x: \nu(A) . \nu(B) & \text { otherwise }\end{cases}
\end{gathered}
$$

- Using the four rewrite rules of $\Sigma_{p r e}$, we have $A \equiv \nu(A)$

Small types

- Small types: types A such that $\nu(A)$ is defined and generated by

$$
\begin{gathered}
\mathcal{S}::=\operatorname{Set} \mid \mathcal{S} \rightarrow \mathcal{S} \\
\mathcal{P}::=\operatorname{Prf} \text { a }|\mathcal{P} \rightarrow \mathcal{S}| \Pi z: \mathcal{S} . \mathcal{P} \\
\mathcal{E}::=E / b|\mathcal{E} \rightarrow \mathcal{S}| \Pi z: \mathcal{S} . \mathcal{E}
\end{gathered}
$$

- Set \rightarrow (Set \rightarrow Set $) \checkmark$

Prf $a \rightarrow \operatorname{Prf} b$ convertible with $\operatorname{Prf}\left(a \Rightarrow_{d}(\lambda z: \operatorname{Prf} a . b)\right) \checkmark$ Prf $a \rightarrow$ Set \rightarrow Prf b X

- In practice, all types are small

Equality between small types

- Equality $\kappa(A, B)$ between small types A et B

$$
\begin{gathered}
\kappa\left(\text { Prf } a_{1}, \text { Prf } a_{2}\right):=a_{1} \approx a_{2} \quad \kappa\left(E l a_{1}, E l a_{2}\right):=a_{1} \approx a_{2} \quad \kappa(S, S):=\text { True if } S \in \mathcal{S} \\
\kappa\left(T_{1} \rightarrow S, T_{2} \rightarrow S\right):=\kappa\left(T_{1}, T_{2}\right) \text { if } S \in \mathcal{S} \\
\kappa\left(\Pi z: S . T_{1}, \Pi z: S . T_{2}\right):=\Pi z: S . \kappa\left(T_{1}, T_{2}\right) \text { if } S \in \mathcal{S}
\end{gathered}
$$

- Example

$$
\kappa(\Pi x: \text { Set. Prf } P \rightarrow \operatorname{Prf} Q, \Pi x: \text { Set. Prf } R):=\Pi x: \text { Set. }\left(P \Rightarrow_{d} \lambda z: P . Q\right) \approx R
$$

Axioms of equality between small types

- Functional extensionality with different domains

$$
\begin{aligned}
\text { fun }_{A_{1}, A_{2}, B_{1}, B_{2}}: & \Pi f_{1}:\left(\Pi x: A_{1} \cdot B_{1}\right) \cdot \Pi f_{2}:\left(\Pi y: A_{2} \cdot B_{2}\right) . \\
& \kappa\left(A_{1}, A_{2}\right) \\
& \rightarrow \Pi x: A_{1} \cdot \Pi y: A_{2} \cdot(x \approx y) \rightarrow\left(f_{1} x \approx f_{2} y\right) \\
& \rightarrow f_{1} \approx f_{2}
\end{aligned}
$$

- If A is generated by \mathcal{S}, we simply have

$$
\begin{aligned}
\text { fun }_{A, B_{1}, B_{2}}: & \Pi f_{1}:\left(\Pi x: A \cdot B_{1}\right) \cdot \Pi f_{2}:\left(\Pi x: A \cdot B_{2}\right) . \\
& \left(\Pi x: A \cdot f_{1} x \approx f_{2} x\right) \\
& \rightarrow f_{1} \approx f_{2}
\end{aligned}
$$

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding

Equality

Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result

Conclusion

Transports

\square Let $\Gamma \vdash t: A$ and $\Gamma \vdash p: \kappa(A, B)$ with A and B small types.

We can build a term transp $p t$ such that:
$-\Gamma \vdash \operatorname{transp} p t: B$
$-\Gamma \vdash \operatorname{transp} p t{ }_{B} \approx_{A} t$

■ Idea of the translation: insert transports in the terms each time Conv is used

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms

Translation

Main result
Conclusion

Translation

- Translation of terms $\bar{t} \triangleleft t$ (" \bar{t} is a translation of t ")

$$
\begin{array}{ccc}
\overline{x \triangleleft x} & \begin{array}{cc}
\bar{t} \triangleleft t & \bar{u} \triangleleft u \\
(\lambda x: \bar{t} . \bar{u}) \triangleleft(\lambda x: t . u) & \bar{t} \triangleleft t \quad \bar{u} \triangleleft u \\
& \frac{\bar{t} \triangleleft t}{(\Pi x: \bar{t} . \bar{u}) \triangleleft(\Pi x: t . u)} \\
& \bar{u} \bar{u}) \triangleleft(t u)
\end{array} \frac{\bar{t} \triangleleft t}{(\operatorname{transp} p \bar{t}) \triangleleft t}
\end{array}
$$

No more conversion rules!

- Translation of contexts

$$
\overline{\rangle \triangleleft\rangle}
$$

$$
\frac{\bar{\Gamma} \triangleleft \Gamma \quad \bar{A} \triangleleft A}{(\bar{\Gamma}, x: \bar{A}) \triangleleft(\Gamma, x: A)}
$$

Key results on the translation

- Equal translations

If \bar{t} and \bar{t}^{\prime} are two translations of t, then $\bar{t} \approx \bar{t}^{\prime}$

- Switching translations

If $\bar{\Gamma} \vdash \bar{t}: \bar{A}$ and $\bar{\Gamma} \vdash \bar{A}^{\prime}:$ TYPE, then there exists $\bar{t}^{\prime} \triangleleft t$ such that $\bar{\Gamma} \vdash \bar{t}^{\prime}: \bar{A}^{\prime}$

Translation of signatures

$$
\overline{\rangle \triangleleft\rangle} \quad \frac{\bar{\Sigma} \triangleleft \Sigma}{} \overline{(\bar{\Sigma}, c: \bar{A}) \triangleleft(\Sigma, c: A)}
$$

When $\ell, r: A$ with free variables $\boldsymbol{x}: \boldsymbol{B}$

$$
\frac{\bar{\Sigma} \triangleleft \Sigma \quad \bar{\ell} \triangleleft \ell \quad \bar{r} \triangleleft r \quad \bar{B} \triangleleft B \quad \bar{A} \triangleleft A}{\left(\bar{\Sigma}, \mathrm{eq}_{\ell r}: \Pi x: \bar{B} \cdot \bar{\ell}_{\bar{A}} \approx_{\bar{A}} \bar{r}\right) \triangleleft(\Sigma, \ell \hookrightarrow r)}
$$

No more rewrite rules!

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms

Translation

Main result
Conclusion

From rewrite rules to axioms

Let a theory $\mathcal{T}=\left(\Sigma_{\text {pre }} \cup \Sigma_{\mathcal{T}}\right)$ a theory with prelude encoding.
Suppose that all types are small.

- There exists a signature $\bar{\Sigma}_{\mathcal{T}} \triangleleft \Sigma_{T}$ such that $\mathcal{T}^{\text {ax }}=\left(\Sigma_{\text {pre }} \cup \Sigma_{e q} \cup \bar{\Sigma}_{\mathcal{T}}\right)$ is a theory
- $\Sigma_{\text {pre }}$ remains unchanged
$-\Sigma_{e q}$ is the signature defining the equalities
- For every $A \equiv B$ in \mathcal{T} with A and B small types, there exists some $p: \kappa(\bar{A}, \bar{B})$ in $\mathcal{T}^{\text {ax }}$
- For every $\Gamma \vdash t: A$ in \mathcal{T}, we have $\bar{\Gamma} \vdash \bar{t}: \bar{A}$ in $\mathcal{T}^{\text {ax }}$

Axiomatized theory $\mathcal{T}^{\text {ax }}$

- $\bar{\Sigma}_{\mathcal{T}}$ is a fully axiomatized user-defined signature
\hookrightarrow The only rewrite rules in $\mathcal{T}^{\text {ax }}$ are the 4 of the prelude encoding
- Conservativity: \mathcal{T} is conservative over $\mathcal{T}^{\text {ax }}$
- Relative consistency: if $\mathcal{T}^{\text {ax }}$ is consistent then \mathcal{T} is also consistent

Outline

The $\lambda \Pi$-calculus modulo theory
Syntax and type system
Prelude encoding
Equality
Equality between objects
Equality between types
Replacing rewrite rules by equational axioms
Translation
Main result
Conclusion

The $\lambda \Pi$-calculus modulo theory

- Logical framework
- Theories can be defined by users using typed constants and rewrite rules
- Many theories can be expressed
- Examples: Predicate Logic, Calculus of Constructions
- Minimal logical framework
- Finite hierarchy of sorts and no identity types
- Heterogeneous equality between objects
- Difficult to define an equality between types

Replacing rewrite rules by equational axioms

- Considered theories
- Prelude encoding
- Small types
\hookrightarrow In practice, always the case
- User-defined rewrite rules can be replaced by equational axioms
- Application: interoperability between proof systems via Dedukti

