
A language for computer algebra
and its formally verified compiler

Non-permanent LMF seminar

January 30, 2024

Josué Moreau

Computer Algebra

Algorithms working with mathematical objects (matrices, polynomials, etc)
Efficiency ⇒ Specialized libraries: BLAS (linear algebra),
GMP (multi-precision integers), etc

Josué Moreau A language for computer algebra and its formally verified compiler 1 / 32

Bugs

Example (GMP ≤ 5.1.1)
mpz_pown_ui(r, b, e, m): r← b

e mod m

Computes garbage if b is over 15000 decimal.

⇒ We want to verify computer algebra programs.

Example (GMP 6.2.0)
MacOS Xcode 11 prior to 11.3 miscompiles GMP, leading to crashes and miscomputation.

⇒ We have to be sure compilers don’t introduce bugs.

Josué Moreau A language for computer algebra and its formally verified compiler 2 / 32

Bugs

Example (GMP ≤ 5.1.1)
mpz_pown_ui(r, b, e, m): r← b

e mod m

Computes garbage if b is over 15000 decimal.

⇒ We want to verify computer algebra programs.

Example (GMP 6.2.0)
MacOS Xcode 11 prior to 11.3 miscompiles GMP, leading to crashes and miscomputation.

⇒ We have to be sure compilers don’t introduce bugs.

Josué Moreau A language for computer algebra and its formally verified compiler 2 / 32

FRESCO: Fast and Reliable Symbolic Computation

High-Level Code

Optimized Code

Machine Code

Computer Algebra
Semantics

Verified Refinements

Verified Compilation

Execution

π

Turn the Coq proof assistant
into an environment where

fast implementations
of computer algebra algorithms
can be written and verified
machine code will be executed in Coq
results will be used in proofs

+ Proof of programs
My work

Josué Moreau A language for computer algebra and its formally verified compiler 3 / 32

FRESCO: Fast and Reliable Symbolic Computation

High-Level Code

Optimized Code

Machine Code

Computer Algebra
Semantics

Verified Refinements

Verified Compilation

Execution

π

Turn the Coq proof assistant
into an environment where

fast implementations
of computer algebra algorithms
can be written and verified
machine code will be executed in Coq
results will be used in proofs

+ Proof of programs
My work

Josué Moreau A language for computer algebra and its formally verified compiler 3 / 32

FRESCO: Fast and Reliable Symbolic Computation

High-Level Code

Optimized Code

Machine Code

Computer Algebra
Semantics

Verified Refinements

Verified Compilation

Execution

π

Turn the Coq proof assistant
into an environment where

fast implementations
of computer algebra algorithms
can be written and verified
machine code will be executed in Coq
results will be used in proofs

+ Proof of programs
My work

Josué Moreau A language for computer algebra and its formally verified compiler 3 / 32

Goals

a low-level language:
suitable for computer algebra algorithms (e.g., arrays, matrices)
safe (e.g., no access outside the memory of the program)
with constructions simplifying the proof of programs (e.g., no aliasing)

a formally verified compiler for this language (such as CompCert)

Josué Moreau A language for computer algebra and its formally verified compiler 4 / 32

Some existing approaches
Rust : safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language
+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST/CompCert (C) : unsafe language
+ user can prove safety and correctness
+ formally verified compiler (CompCert)

Why3 (WhyML) and frama-C (C) : unsafe languages
+ user can prove safety and correctness more automatically (ex: WhyMP)
- but the compiler (at least extraction) is not proved for Why3
- even if we compile a verified ACSL program with CompCert,

no guarantee that C semantics of CompCert and frama-C agree

Josué Moreau A language for computer algebra and its formally verified compiler 5 / 32

Some existing approaches
Rust : safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language
+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST/CompCert (C) : unsafe language
+ user can prove safety and correctness
+ formally verified compiler (CompCert)

Why3 (WhyML) and frama-C (C) : unsafe languages
+ user can prove safety and correctness more automatically (ex: WhyMP)
- but the compiler (at least extraction) is not proved for Why3
- even if we compile a verified ACSL program with CompCert,

no guarantee that C semantics of CompCert and frama-C agree

Josué Moreau A language for computer algebra and its formally verified compiler 5 / 32

Some existing approaches
Rust : safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language
+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST/CompCert (C) : unsafe language
+ user can prove safety and correctness
+ formally verified compiler (CompCert)

Why3 (WhyML) and frama-C (C) : unsafe languages
+ user can prove safety and correctness more automatically (ex: WhyMP)
- but the compiler (at least extraction) is not proved for Why3
- even if we compile a verified ACSL program with CompCert,

no guarantee that C semantics of CompCert and frama-C agree

Josué Moreau A language for computer algebra and its formally verified compiler 5 / 32

Some existing approaches
Rust : safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language
+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST/CompCert (C) : unsafe language
+ user can prove safety and correctness
+ formally verified compiler (CompCert)

Why3 (WhyML) and frama-C (C) : unsafe languages
+ user can prove safety and correctness more automatically (ex: WhyMP)
- but the compiler (at least extraction) is not proved for Why3
- even if we compile a verified ACSL program with CompCert,

no guarantee that C semantics of CompCert and frama-C agree

Josué Moreau A language for computer algebra and its formally verified compiler 5 / 32

Table of contents

1 Design of the language

2 Semantics

3 Compilation

Josué Moreau A language for computer algebra and its formally verified compiler 6 / 32

Design of the language

Matrix Multiplication

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],

m: u64, n: u64, p: u64) {
for i: u64 = 0 ... m

for j: u64 = 0 ... p {

dest[i, j] = 0;
for k: u64 = 0 ... n

dest[i, j] <-- dest[i, j] + a[i, k] * b[k, j]

}

}

Josué Moreau A language for computer algebra and its formally verified compiler 7 / 32

Matrix Multiplication

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],

m: u64, n: u64, p: u64) {
for i: u64 = 0 ... m

for j: u64 = 0 ... p {

dest[i, j] = 0;
for k: u64 = 0 ... n

dest[i, j] <-- dest[i, j] + a[i, k] * b[k, j]

}

}

Array size passed explicitly as
arguments

Josué Moreau A language for computer algebra and its formally verified compiler 7 / 32

Matrix Multiplication

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],

m: u64, n: u64, p: u64) {
for i: u64 = 0 ... m

for j: u64 = 0 ... p {

dest[i, j] = 0;
for k: u64 = 0 ... n

dest[i, j] <-- dest[i, j] + a[i, k] * b[k, j]

}

}

Array size passed explicitly as
arguments

Same size for multiple arrays

Josué Moreau A language for computer algebra and its formally verified compiler 7 / 32

Matrix Multiplication

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],

m: u64, n: u64, p: u64) {
for i: u64 = 0 ... m

for j: u64 = 0 ... p {

dest[i, j] = 0;
for k: u64 = 0 ... n

dest[i, j] <-- dest[i, j] + a[i, k] * b[k, j]

}

}

Array size passed explicitly as
arguments

Same size for multiple arrays

Distinction mutable/persistent arrays
+ borrowing
⇒ proof of program

Josué Moreau A language for computer algebra and its formally verified compiler 7 / 32

Paths and expressions

Syntactic path:
q ::= id [~e][~e]...

Expressions:
e ::= c constants

| (τ1 → τ2)e cast
| op1(e) unary operations (not, neg)
| op2(e1, e2) binary operations (+,−, ∗, /, >>>, ...)
| q read

Josué Moreau A language for computer algebra and its formally verified compiler 8 / 32

Instructions

s ::= skip

| q ← e writing
| id? ← f (q1, ..., qn) function call
| s1; s2 sequence
| return e?
| if e {s1} else {s2}
| loop {s}
| break | continue
| error

Josué Moreau A language for computer algebra and its formally verified compiler 9 / 32

Functions

sig ::= {args = ~τ; res = τ}

F ::= {
sig = sig
params = ~id
vars = ~id
tenv = id ⇀ τ (written ΓF in next slides)
szenv = id ⇀ [[~e], ...] (written ΣF in next slides)
penv = id ⇀ {Shared, Mut, Own} (written ρF in next slides)
body = s

}

And some properties on functions (e.g. ∀x , ∀s ∈ ΣF (x),ρF (s) = Shared).

Josué Moreau A language for computer algebra and its formally verified compiler 10 / 32

Example: Multiplication of polynomials

fun mul_poly(a: [i64; m], b: [i64; n], dest: mut [i64; m + n - 1],

m n: u64) {
for i: u64 = 0 ... m

for j: u64 = 0 ... n

dest[i + j] = dest[i + j] + a[i] * b[j];

}

fun mul_poly(a: [i64; da + 1], b: [i64; db + 1],

dest: mut [i64; da + db + 1],

da db: u64) {

for i: u64 = 0 ... (da + 1)

for j: u64 = 0 ... (db + 1)

dest[i + j] = dest[i + j] + a[i] * b[j];

}

Josué Moreau A language for computer algebra and its formally verified compiler 11 / 32

Example: Multiplication of polynomials

fun mul_poly(a: [i64; m], b: [i64; n], dest: mut [i64; m + n - 1],

m n: u64) {
for i: u64 = 0 ... m

for j: u64 = 0 ... n

dest[i + j] = dest[i + j] + a[i] * b[j];

}

fun mul_poly(a: [i64; da + 1], b: [i64; db + 1],

dest: mut [i64; da + db + 1],

da db: u64) {

for i: u64 = 0 ... (da + 1)

for j: u64 = 0 ... (db + 1)

dest[i + j] = dest[i + j] + a[i] * b[j];

}

Josué Moreau A language for computer algebra and its formally verified compiler 11 / 32

Semantics

Semantics: operations and errors

Edivs

E ,F ` e1 ⇒ Vint i1 E ,F ` e2 ⇒ Vint i2
i2 6= 0 i1 6= min_sint ∨ i2 6= −1
E ,F ` divs(e1, e2)⇒ Vint (i1/i2)

EdivsErr

E ,F ` e1 ⇒ Vint i1 E ,F ` e2 ⇒ Vint i2
i2 = 0 ∨ (i1 = min_sint ∧ i2 = −1)
E ,F ` divs(e1, e2)⇒ error

EdivsErr1
E ,F ` e1 ⇒ error E ,F ` e2 ⇒ v/error

E ,F ` divs(e1, e2)⇒ error

Josué Moreau A language for computer algebra and its formally verified compiler 12 / 32

Semantics: operations and errors

Edivs

E ,F ` e1 ⇒ Vint i1 E ,F ` e2 ⇒ Vint i2
i2 6= 0 i1 6= min_sint ∨ i2 6= −1
E ,F ` divs(e1, e2)⇒ Vint (i1/i2)

EdivsErr

E ,F ` e1 ⇒ Vint i1 E ,F ` e2 ⇒ Vint i2
i2 = 0 ∨ (i1 = min_sint ∧ i2 = −1)
E ,F ` divs(e1, e2)⇒ error

EdivsErr1
E ,F ` e1 ⇒ error E ,F ` e2 ⇒ v/error

E ,F ` divs(e1, e2)⇒ error

Josué Moreau A language for computer algebra and its formally verified compiler 12 / 32

Semantics: operations and errors

Edivs

E ,F ` e1 ⇒ Vint i1 E ,F ` e2 ⇒ Vint i2
i2 6= 0 i1 6= min_sint ∨ i2 6= −1
E ,F ` divs(e1, e2)⇒ Vint (i1/i2)

EdivsErr

E ,F ` e1 ⇒ Vint i1 E ,F ` e2 ⇒ Vint i2
i2 = 0 ∨ (i1 = min_sint ∧ i2 = −1)
E ,F ` divs(e1, e2)⇒ error

EdivsErr1
E ,F ` e1 ⇒ error E ,F ` e2 ⇒ v/error

E ,F ` divs(e1, e2)⇒ error

Josué Moreau A language for computer algebra and its formally verified compiler 12 / 32

Semantics: casts

EcastSIntF64
E ,F ` e ⇒ Vint n

E ,F ` (int32,Signed → float64)e ⇒ Vfloat64 fn

EcastF64SInt64

E ,F ` e ⇒ Vfloat64 f
−263 ≤ f < 263

E ,F ` (float64 → int64,Signed)e ⇒ Vint64 nf

EcastF64SInt64Err

E ,F ` e ⇒ Vfloat64 f
f < −263 ∨ f ≥ 263

E ,F ` (float64 → int64,Signed)e ⇒ error

Josué Moreau A language for computer algebra and its formally verified compiler 13 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Memory Model

E
a 42

b 0.125

t

s

3 1 · · ·

· · ·1

6
...

4

7
...

Semantic paths:
p ::= id [n][n]... (linear array)

dest[i , j][k] ⇒
dest[i ∗ sizeof(dest[0])+ j][k]

E [(a, [])] = 42
E [(b, [])] = 0.125
E [(t, [0])] = 3
E [(s, [1; 1])] = 7

Josué Moreau A language for computer algebra and its formally verified compiler 14 / 32

Semantics: instructions

Step in the semantics (G is the definition of all functions):

G ` st → st ′

st ::= S(E ,F , s, k) regular state
| C(F , ~v , k) call state
| R(E ,F , v , k) return state

k ::= Kstop end of program
| Kseq(s, k) sequence
| Kloop(s, k) loop
| Kreturnto(id?,E ,F ,m, k) return

Josué Moreau A language for computer algebra and its formally verified compiler 15 / 32

Semantics: writing

Write

E ,F ` q ⇒ p p = (i ,~z)
E ,F ` e ⇒ v primitive_value(v)
ΓF (p) = τ v ∈ τ PF (i) ≥ Mut

S(E ,F , q ← e, k)→ S(E [p 7→ v],F , skip, k)

WriteErr
E ,F ` q ⇒ error

S(E ,F , q ← e, k)→ S(E ,F , error, k)

Josué Moreau A language for computer algebra and its formally verified compiler 16 / 32

Semantics: function call

CallInternal

G(idf) = Internal(F ′) |~a| = |F ′.sig.sig_args|
E ,F ` ~a⇒ ~p E(~p) = ~v ~v ∈ F ′.sig.sig_args

∀i ,PF (pi) ≥ PF ′(F .paramsi)
∀i ,ΓF (pi) = ΓF ′(F ′.paramsi)

valid_call(E ,F , Internal(F ′), p)
∀i j , i 6= j ∧ PF ′(F ′.paramsi) ≥ Mut→ pi 6� pj ∧ pj 6� pi

S(E ,F , call(idv , idf ,~a), k)→ C(F ′, ~x , Kreturnto(idv ,E ,F ,m, k))
∀i , xi = (pi , vi) m = {(pi ,F ′.paramsi) | PF ′(F ′.paramsi) ≥ Mut}

Josué Moreau A language for computer algebra and its formally verified compiler 17 / 32

Semantics: return

Return

∀(p, i) ∈ m,E [p] = Varr _ ∧ E ′[i] = Varr _

∀(p, i) ∈ m,ΓF [p] = ΓF ′ [i]
primitive_value(v)

Eupd = update_env(E ,m,E ′)

R(E ′,F ′, v , Kreturnto(idv ,E ,F ,m, k)→ S(Eupd [idv 7→ v],F , skip, k)

Josué Moreau A language for computer algebra and its formally verified compiler 18 / 32

Proof of program

Environments trivially express the absence of alias
Anything which is not passed (as mutable) to a called function is not modified
Multidimensional arrays avoid using non linear arithmetic
Easy WP computation

Josué Moreau A language for computer algebra and its formally verified compiler 19 / 32

Compilation

Compilation

L1 C#minor Assembler

Copy/restore semantics

Safe language with errors

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

L1 C#minor Assembler

Copy/restore semantics Pointer semantics

Safe language with errors

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

L1 C#minor Assembler

Copy/restore semantics Pointer semantics

CompCert

Safe language with errors

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

L1 L2 C#minor Assembler

Copy/restore semantics Pointer semantics

CompCert

Safe language with errors

Add dynamic
tests

Language with undefined
behaviors

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

L1 L2 C#minor Assembler

Copy/restore semantics Pointer semantics

CompCert

Safe language with errors

Add dynamic
tests

Language with undefined
behaviors

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Translation L1 → L2: test generation

ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)

ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 21 / 32

Translation L1 → L2: test generation

ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)
ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 21 / 32

Translation L1 → L2: test generation

ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)
ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 21 / 32

Translation L1 → L2: test generation

ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)
ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 21 / 32

Translation L2 → C#minor

Translation from L2 to C#minor is mostly a 1-to-1 translation,
except for the following constructions:

TrExp(id [e1, ..., ek]) = ∗
(
id t + sizeof(id [0, ..., 0])×(
(((et1 × st2 + et2)× st3 + ...) ...)× stk + e

t
k
))

where et = TrExp(e)

TrExp(e1 <<32 e2) = TrExp(e1) <<32 (TrExp(e2) & 31)

TrStmt(error) = loop {abort(); }

Josué Moreau A language for computer algebra and its formally verified compiler 22 / 32

Translation L2 → C#minor

Translation from L2 to C#minor is mostly a 1-to-1 translation,
except for the following constructions:

TrExp(id [e1, ..., ek]) = ∗
(
id t + sizeof(id [0, ..., 0])×(
(((et1 × st2 + et2)× st3 + ...) ...)× stk + e

t
k
))

where et = TrExp(e)

TrExp(e1 <<32 e2) = TrExp(e1) <<32 (TrExp(e2) & 31)

TrStmt(error) = loop {abort(); }

Josué Moreau A language for computer algebra and its formally verified compiler 22 / 32

Translation L2 → C#minor

Translation from L2 to C#minor is mostly a 1-to-1 translation,
except for the following constructions:

TrExp(id [e1, ..., ek]) = ∗
(
id t + sizeof(id [0, ..., 0])×(
(((et1 × st2 + et2)× st3 + ...) ...)× stk + e

t
k
))

where et = TrExp(e)

TrExp(e1 <<32 e2) = TrExp(e1) <<32 (TrExp(e2) & 31)

TrStmt(error) = loop {abort(); }

Josué Moreau A language for computer algebra and its formally verified compiler 22 / 32

Formally verified compilation

previous
state

next
state

previous
state

next
state

source
instruction

assembly
program

language
semantics

concrete exe-
cution

relation
between states

Every property on the source program is also verified by the generated program.

Josué Moreau A language for computer algebra and its formally verified compiler 23 / 32

Formally verified compilation

previous
state

next
state

previous
state

next
state

source
instruction

assembly
program

language
semantics

concrete exe-
cution

relation
between states

Every property on the source program is also verified by the generated program.

Josué Moreau A language for computer algebra and its formally verified compiler 23 / 32

Difficulties

Ensure generated tests are correct and complete.
Maintain a correspondance between our environment and the memory of C#minor.

Josué Moreau A language for computer algebra and its formally verified compiler 24 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V

V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)

t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Visibility)

t : N× P→ N∗ × N× V V = {Visible} ∪ {Hidden(p) | p ∈ P}

n

n+ 1

s : · · ·1

6
...

4

7
...

f(u: mut [[i64; n]; m], m n: u64)

t(n, s) = (42, 0, Visible)
t(n, s[0]) = (71, 0, Visible)

u : · · ·1

6
...

4

7
...

t ′(n+ 1, u) = (42, 0, Visible)
t ′(n+ 1, u[0]) = (71, 0, Visible)
t ′(n, s) = (42, 0, Hidden(u))
t ′(n, s[0]) = (71, 0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler 25 / 32

Translation L2 → C#minor - Proof (Invariants)
Synchronisation between environments and C#minor’s memory:

∀n p lv , En[p] = Varr lv →
∃b o s, t(n, p) = (b, o, s) ∧

s = Visible→
∀i , 0 ≤ i < |lv | →

M[(b, o + i × sizeof(ΓFn [p ++ [0]]))] = transl_value(lv [i])

Separation of visible paths in the translation function:

∀n (i , l) b o, t(n, (i , l)) = (b, o, Visible) ∧ PFn(i) ≥ Mut→
(∀m p′ b′ o′,m < n ∧ t(m, p′) = (b′, o′, Visible)→ b 6= b′)∧
(∀p′ b′ o′, (i , l) 6= p′ ∧ t(n, p′) = (b′, o′,_)))→ b 6= b′)

Josué Moreau A language for computer algebra and its formally verified compiler 26 / 32

Translation L2 → C#minor - Proof (Invariants)
Synchronisation between environments and C#minor’s memory:

∀n p lv , En[p] = Varr lv →
∃b o s, t(n, p) = (b, o, s) ∧

s = Visible→
∀i , 0 ≤ i < |lv | →

M[(b, o + i × sizeof(ΓFn [p ++ [0]]))] = transl_value(lv [i])

Separation of visible paths in the translation function:

∀n (i , l) b o, t(n, (i , l)) = (b, o, Visible) ∧ PFn(i) ≥ Mut→
(∀m p′ b′ o′,m < n ∧ t(m, p′) = (b′, o′, Visible)→ b 6= b′)∧
(∀p′ b′ o′, (i , l) 6= p′ ∧ t(n, p′) = (b′, o′,_)))→ b 6= b′)

Josué Moreau A language for computer algebra and its formally verified compiler 26 / 32

Formal verification

Coq

Theorem transl_stmt_sem_preservation:
forall p hfuncs Habort tp s s' ts t,

.....
transl_program' hfuncs Habort p = OK tp ->-
match_states p hfuncs Habort s ts ->-

step_events (genv_of_program p) s t s' ->-

exists ts', plus Csharpminor.step (Genv.globalenv tp) ts t ts' //\
match_states p hfuncs Habort s' ts'.

Theorem transl_program_correct hfuncs (p: program):
forall tp,

transl_program hfuncs p = OK tp ->-

forward_simulation (SemanticsBlocking.semantics p)
(Csharpminor.semantics tp).

Josué Moreau A language for computer algebra and its formally verified compiler 27 / 32

Stats
Coq Code / Spec Proof
Syntax and types 814 283
Common semantics definitions and proofs 1403 1040
L1 semantics 882 495
L2 semantics 367 107
L1 → L2 887 1642
L2 → C#minor 1901 2910
Typing 616 104
Safety 1056 2776
Miscellaneous 979 936

+ ∼ 2000 lines of OCaml (parser, type inference and simplifications)

Josué Moreau A language for computer algebra and its formally verified compiler 28 / 32

Stats
Coq Code / Spec Proof
Syntax and types 814 283
Common semantics definitions and proofs 1403 1040
L1 semantics 882 495
L2 semantics 367 107
L1 → L2 887 1642
L2 → C#minor 1901 2910
Typing 616 104
Safety 1056 2776
Miscellaneous 979 936

+ ∼ 2000 lines of OCaml (parser, type inference and simplifications)

Josué Moreau A language for computer algebra and its formally verified compiler 28 / 32

Generated code: addition of vectors

void add_vectors(a: [i64; n], b: [i64; n], dest: mut [i64; n], n: u64) {

for i: u64 = 0 ... n {

dest[i] = a[i] + b[i]

}

}

Josué Moreau A language for computer algebra and its formally verified compiler 29 / 32

Generated code: addition of vectors (Assembler)
add_vectors: ; %rdi = a, %rsi = b, %rdx = dest, %rcx = n
.....
xorq %rax, %rax ; %rax = i <-- 0

.L100:
cmpq %rcx, %rax ; for loop condition
jae .L101 ; i >>= n =>= end of loop
cmpq %rcx, %rax ; array bound check
jae .L102 ; i >>= n =>= error

movq 0(%rdi,%rax,8), %r8 ; %r8 <-- a[i]

movq 0(%rsi,%rax,8), %r9 ; %r9 <-- b[i]

leaq 0(%r8,%r9,1), %r8 ; %r8 <-- %r8 + %r9 = a[i] + b[i]

movq %r8, 0(%rdx,%rax,8) ; dest[i] <-- %r8 = a[i] + b[i]

leaq 1(%rax), %rax ; i <-- i + 1
jmp .L100

.L102: ; translation of error
call abort
jmp .L102

.L101:
.....
ret

Josué Moreau A language for computer algebra and its formally verified compiler 30 / 32

Conclusion

We now have

A language
safe
suitable for computer algebra algorithms
simplifying proof of programs (no aliasing, no memory, mutability)

A formally verified compiler
generating correct code
semantics preservation theorem proved with Coq
a bit of optimization

Josué Moreau A language for computer algebra and its formally verified compiler 31 / 32

We now have

A language
safe
suitable for computer algebra algorithms
simplifying proof of programs (no aliasing, no memory, mutability)

A formally verified compiler
generating correct code
semantics preservation theorem proved with Coq
a bit of optimization

Josué Moreau A language for computer algebra and its formally verified compiler 31 / 32

Future work

More constructions
array views
records
malloc / free (in progress)

Programs logic (⇒ functional correctness)
Optimizations / performance

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Future work

More constructions
array views
records
malloc / free (in progress)

Programs logic (⇒ functional correctness)

Optimizations / performance

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Future work

More constructions
array views
records
malloc / free (in progress)

Programs logic (⇒ functional correctness)
Optimizations / performance

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Thanks !

Semantics: evaluation of path

EvPNil
E ,F ,_ ` []⇒ []

EvScell

∀k,E ,F ` uk ⇒ Vint64 nk
E ,F `~i ⇒ ~v

build_index ~v ~n = Some j
valid_index ~v ~n

E ,F ,~u ::~l ` (Scell ~i) :: ~s ⇒ (Pcell j) :: ~z

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Semantics: evaluation of path - error cases

ErrP1

∀k,E ,F ` uk ⇒ Vint64 nk
E ,F `~i ⇒ ~v

build_index ~v ~n = Some j
¬valid_index ~v ~n

E ,F ,~u ::~l ` (Scell ~i) :: ~s ⇒ error

ErrP2

∀k,E ,F ` uk ⇒ Vint64 nk
E ,F `~i ⇒ error

E ,F ,~u ::~l ` (Scell ~i) :: ~s ⇒ error

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Example: Eratosthene’s sieve

fun eratosthene(prime: mut [bool; N], N: u64) {
if N < 2 return;

prime[0u32] = false;

prime[1u32] = false;
for k: u64 = 4 ... N step 2

prime[k] = false;
let i: u64 = 3;

while (i * i < N) {

if prime[i] {

for j: u64 = i ... (N / i + 1) step 2

prime[i * j] = false;

}
i = i + 1

}

}

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Example: Block Matrix Multiplication
fun block_mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],

m n p bs: u64) {
let s: i64 = 0;

for I: u64 = 0 ... m step bs {

let Imax: u64 = min(m, I + bs);

for J: u64 = 0 ... p step bs {

let Jmax: u64 = min(p, J + bs);

for K: u64 = 0 ... n step bs {

let Kmax: u64 = min(n, K + bs);
for i: u64 = I ... Imax

for j: u64 = J ... Jmax {
s = 0;
for k: u64 = K ... Kmax

s = s + a[i, k] * b[k, j];

dest[i, j] = dest[i, j] + s

}

}

}

}

}Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Example: Gauss
fun gauss(A: mut [f64; n, m], n m: u64) {
let r: u64 = 0;

for j: i64 = 0 ... m {

let k: i64 = search_max_abs(A, n, m, r, j);

if (k = -1) break;

if A[k, j] !!= 0. {

divide_line_by_const(A, n, m, (u64) k, A[k, j]);

if (u64) k !!= r

exchange_lines(A, n, m, (u64) k, r);

for i: u64 = 0 ... n {
if i !!= r

add_lines(A, n, m, i, j, - A[i, j]);

}
r = r + 1

}

}

}

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Example: Dot product of complex vectors (BLAS)
fun zdotu(n: u64, zx: [f64; 2*n], incx: i32,

zy: [f64; 2*n], incy: i32, res: mut [f64; 2]) {

res[0] = 0.; res[1] = 0.;
if n <<= 0 return;

if incx === 1 &&& incy === 1 {

for i: u64 = 0 ... (2 * n) step 2 {

res[0] = res[0] + zx[i] * zy[i] - zx[i+1] * zy[i+1];

res[1] = res[1] + zx[i+1] * zy[i] + zx[i] * zy[i+1];

}

} else {
let ix: i32 = 1; let iy: i32 = 1;

if (incx < 0) ix = (-(i32)(2*n)+1)*incx + 1;

if (incy < 0) iy = (-(i32)(2*n)+1)*incy + 1;

for i: u64 = 0 ... n {

res[0] = res[0] + zx[ix] * zy[iy] - zx[ix+1] * zy[iy+1];

res[1] = res[1] + zx[ix+1] * zy[iy] + zx[ix] * zy[iy+1];
ix = ix + 2 * incx; iy = iy + 2 * incy;

} } }

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Translation L1 → L2: test generation
ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)

ET(divs(e1, e2)) = ET(e1)++ ET(e2)++
(e2 6= 0 ∧ (e1 6= min_sint ∨ e2 6= −1))

ET((int32,Unsigned → int64,Unsigned)e) = ET(e)
ET((int64,Unsigned → int32,Unsigned)e) = ET(e)
ET((int→ float)e) = ET(e)
ET((float32 → int32,Signed)e) = ET(e)++ (−231 ≤ e < 231)

ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET((float64 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.
Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Translation L1 → L2: test generation
ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)
ET(divs(e1, e2)) = ET(e1)++ ET(e2)++

(e2 6= 0 ∧ (e1 6= min_sint ∨ e2 6= −1))

ET((int32,Unsigned → int64,Unsigned)e) = ET(e)
ET((int64,Unsigned → int32,Unsigned)e) = ET(e)
ET((int→ float)e) = ET(e)
ET((float32 → int32,Signed)e) = ET(e)++ (−231 ≤ e < 231)

ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET((float64 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.
Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Translation L1 → L2: test generation
ET(divu(e1, e2)) = ET(e1)++ ET(e2)++ (e2 6= 0)
ET(divs(e1, e2)) = ET(e1)++ ET(e2)++

(e2 6= 0 ∧ (e1 6= min_sint ∨ e2 6= −1))
ET((int32,Unsigned → int64,Unsigned)e) = ET(e)
ET((int64,Unsigned → int32,Unsigned)e) = ET(e)
ET((int→ float)e) = ET(e)
ET((float32 → int32,Signed)e) = ET(e)++ (−231 ≤ e < 231)

ET((float64 → int32,Signed)e) = ET(e)++ (−231 − 1 < e < 231)

ET((float32 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET((float64 → int32,Unsigned)e) = ET(e)++ (−1 < e < 232)

ET(x [i1, ..., ik]) = ET(i1)++ ...++ ET(ik)++
(i1 <u s1)++ ...++ (ik <u sk)
where s1, ..., sk are the size variables of x

The order of tests is important.
Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Generated code: addition of vectors (L1)

void add_vectors(a: [i64; n], b: [i64; n], dest: mut [i64; n], n: u64)

{

u64 $8; u64 $9; u64 i;

/* $9 = n; */
i = 0u64;

$8 = n;

while true {

if (i <u $8) {

dest[i] = a[i] + b[i];
i = i + 1u64;

} else break;

}

}

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Generated code: addition of vectors (L2)

void add_vectors(a: [i64; n], b: [i64; n], dest: mut [i64; n], n: u64)

{

u64 $8; u64 $9; u64 i;

/* $9 = n; */
i = 0u64;

$8 = n;

while true {

if (i <u $8) {

assert (i <u $9);

dest[i] = a[i] + b[i];
i = i + 1u64;

} else break;

}

}

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

Generated code: addition of vectors (Cminor)
"add_vectors"('a', 'b', 'dest', 'n') : long ->- long ->- long ->- long ->- void

{

var '$9', '$8', 'i';
goto 'code';

'error': "abort"() : void;
goto 'error';

'code': '$9' = 'n'; '$9' = 'n'; '$9' = 'n'; 'i' = 0LL; '$8' = 'n';

{{ loop {

{{ if ('i' <lu '$8') {

if ('i' <lu '$9') { /*skip*/ }

else { goto 'error'; }

int64['dest' +l 8LL *l 'i'] =

int64['a' +l 8LL *l 'i'] +l int64['b' +l 8LL *l 'i'];
'i' = 'i' +l 1LL;

} else { exit 1; }

}}

}

}}

}

Josué Moreau A language for computer algebra and its formally verified compiler 32 / 32

	Introduction
	Design of the language
	Semantics
	Compilation
	Conclusion
	Appendix

