A language for computer algebra and its formally verified compiler

Non-permanent LMF seminar

January 30, 2024

Josué Moreau PARIS-SACLAY
erc

Computer Algebra

- Algorithms working with mathematical objects (matrices, polynomials, etc)
- Efficiency \Rightarrow Specialized libraries: BLAS (linear algebra), GMP (multi-precision integers), etc

Bugs

Example (GMP $\leq 5.1 .1$)

mpz_pown_ui($\mathrm{r}, \mathrm{b}, \mathrm{e}, \mathrm{m}): \mathrm{r} \leftarrow \mathrm{b}^{\mathrm{e}} \bmod \mathrm{m}$
Computes garbage if b is over 15000 decimal.
\Rightarrow We want to verify computer algebra programs.

Bugs

Example (GMP $\leq 5.1 .1$)

mpz_pown_ui($r, b, e, m): r \leftarrow b^{e} \bmod m$
Computes garbage if b is over 15000 decimal.
\Rightarrow We want to verify computer algebra programs.

Example (GMP 6.2.0)

MacOS Xcode 11 prior to 11.3 miscompiles GMP, leading to crashes and miscomputation.
\Rightarrow We have to be sure compilers don't introduce bugs.

FRESCO: Fast and Reliable Symbolic Computation

Turn the Coq proof assistant into an environment where

- fast implementations of computer algebra algorithms can be written and verified
- machine code will be executed in Coq
- results will be used in proofs

FRESCO: Fast and Reliable Symbolic Computation

Turn the Coq proof assistant into an environment where

- fast implementations of computer algebra algorithms can be written and verified
- machine code will be executed in Coq
- results will be used in proofs

FRESCO: Fast and Reliable Symbolic Computation

Goals

- a low-level language:

■ suitable for computer algebra algorithms (e.g., arrays, matrices)
■ safe (e.g., no access outside the memory of the program)
■ with constructions simplifying the proof of programs (e.g., no aliasing)

- a formally verified compiler for this language (such as CompCert)

Some existing approaches

Rust: safe language

+ many interesting constructions
- but the compiler is not verified

Some existing approaches

Rust: safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language
$+\quad$ formally verified compiler

- but poorly suited for libraries such as GMP and BLAS

Some existing approaches

Rust: safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language

+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST/CompCert (C) : unsafe language
$+\quad$ user can prove safety and correctness

+ formally verified compiler (CompCert)

Some existing approaches

Rust: safe language

+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language

+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST/CompCert (C) : unsafe language
$+\quad$ user can prove safety and correctness

+ formally verified compiler (CompCert)
Why3 (WhyML) and frama-C (C) : unsafe languages
+ user can prove safety and correctness more automatically (ex: WhyMP)
- but the compiler (at least extraction) is not proved for Why3
- even if we compile a verified ACSL program with CompCert, no guarantee that C semantics of CompCert and frama-C agree

Table of contents

1 Design of the language

2 Semantics

3 Compilation

Design of the language

Matrix Multiplication

```
fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],
    m: u64, n: u64, p: u64) {
    for i: u64 = 0 .. m
        for j: u64 = 0 .. p {
        dest[i, j] = 0;
        for k: u64 = 0 .. n
            dest[i, j] \leftarrow dest[i, j] + a[i, k] * b[k, j]
        }
}
```


Matrix Multiplication

Array size passed explicitly as arguments

Matrix Multiplication

Same size for multiple arrays

Array size passed explicitly as arguments

Matrix Multiplication

Same size for multiple arrays

Paths and expressions

Syntactic path:

$$
q::=\quad i d[\vec{e}][\vec{e}] \ldots
$$

Expressions:

$$
\begin{aligned}
& e \quad::=c \quad \text { constants } \\
& \left(\tau_{1} \rightarrow \tau_{2}\right) e \text { cast } \\
& o p_{1}(e) \quad \text { unary operations (not, neg) } \\
& \text { op } p_{2}\left(e_{1}, e_{2}\right) \text { binary operations }(+,-, *, /, \gg, \ldots) \\
& \text { read }
\end{aligned}
$$

Instructions

```
s ::= skip
q\leftarrowe writing
id?}\leftarrowf(\mp@subsup{q}{1}{},\ldots,\mp@subsup{q}{n}{})\quad\mathrm{ function call
s};\mp@subsup{s}{2}{
sequence
return e?
if e {s, } else {s, }
loop {s}
break continue
error
```


Functions

$$
\operatorname{sig}::=\{\text { args }=\vec{\tau} ; \text { res }=\tau\}
$$

$$
\mathcal{F} \quad::=\{
$$

$$
\text { sig } \quad=\operatorname{sig}
$$

$$
\text { params }=\overrightarrow{i d}
$$

$$
\operatorname{vars}=\overrightarrow{i d}
$$

$$
\text { tenv }=i d \rightharpoonup \tau \quad \text { (written } \Gamma_{F} \text { in next slides) }
$$

$$
\text { szenv }=i d \rightharpoonup[[\vec{e}], \ldots] \quad \text { (written } \Sigma_{F} \text { in next slides) }
$$

$$
\text { penv } \quad=i d \rightharpoonup\{\text { Shared, Mut, Own }\} \quad \text { (written } \rho_{F} \text { in next slides) }
$$

$$
\text { body } \quad=s
$$

And some properties on functions (e.g. $\forall x, \forall s \in \Sigma_{F}(x), \rho_{F}(s)=$ Shared).

Example: Multiplication of polynomials

```
fun mul_poly(a: [i64; m], b: [i64; n], dest: mut [i64; m + n - 1],
            m n: u64) {
    for i: u64 = 0 .. m
        for j: u64 = 0 .. n
        dest[i + j] = dest[i + j] + a[i] * b[j];
}
```


Example: Multiplication of polynomials

```
fun mul_poly(a: [i64; m], b: [i64; n], dest: mut [i64; m + n - 1],
            m n: u64) {
    for i: u64 = 0 .. m
        for j: u64 = 0 .. n
        dest[i + j] = dest[i + j] + a[i] * b[j];
}
```

```
fun mul_poly(a: [i64; da + 1], b: [i64; db + 1],
            dest: mut [i64; da + db + 1],
            da db: u64) {
        for i: u64 = 0 .. (da + 1)
            for j: u64 = 0 .. (db + 1)
            dest[i + j] = dest[i + j] + a[i] * b[j];
}
```


Semantics

Semantics: operations and errors

$$
\text { Edivs } \frac{\begin{array}{c}
E, F \vdash e_{1} \Rightarrow \operatorname{Vint} i_{1} \quad E, F \vdash e_{2} \Rightarrow \operatorname{Vint} i_{2} \\
i_{2} \neq 0 \quad i_{1} \neq \text { min_sint } \vee i_{2} \neq-1
\end{array}}{E, F \vdash \operatorname{divs}\left(e_{1}, e_{2}\right) \Rightarrow \operatorname{Vint}\left(i_{1} / i_{2}\right)}
$$

Semantics: operations and errors

$$
\begin{aligned}
& E, F \vdash e_{1} \Rightarrow \text { vint } i_{1} \quad E, F \vdash e_{2} \Rightarrow \text { vint } i_{2} \\
& \text { Edivs } \frac{i_{2} \neq 0 \quad i_{1} \neq \text { min_sint } \vee i_{2} \neq-1}{E, F \vdash \operatorname{divs}\left(e_{1}, e_{2}\right) \Rightarrow \operatorname{Vint}\left(i_{1} / i_{2}\right)} \\
& E, F \vdash e_{1} \Rightarrow \text { Vint } i_{1} \quad E, F \vdash e_{2} \Rightarrow \text { Vint } i_{2} \\
& i_{2}=0 \vee\left(i_{1}=\text { min_sint } \wedge i_{2}=-1\right) \\
& \text { EdivsErr } \quad E, F \vdash \operatorname{divs}\left(e_{1}, e_{2}\right) \Rightarrow \text { error }
\end{aligned}
$$

Semantics: operations and errors

$$
\begin{aligned}
& E, F \vdash e_{1} \Rightarrow \text { Vint } i_{1} \quad E, F \vdash e_{2} \Rightarrow \text { vint } i_{2} \\
& \text { Edivs } \frac{i_{2} \neq 0 \quad i_{1} \neq \text { min_sint } \vee i_{2} \neq-1}{E, F \vdash \operatorname{divs}\left(e_{1}, e_{2}\right) \Rightarrow \operatorname{Vint}\left(i_{1} / i_{2}\right)} \\
& E, F \vdash e_{1} \Rightarrow \text { Vint } i_{1} \quad E, F \vdash e_{2} \Rightarrow \text { Vint } i_{2} \\
& i_{2}=0 \vee\left(i_{1}=\text { min_sint } \wedge i_{2}=-1\right) \\
& E, F \vdash \operatorname{divs}\left(e_{1}, e_{2}\right) \Rightarrow \text { error } \\
& \text { EdivsErr1 } \frac{E, F \vdash e_{1} \Rightarrow \text { error } \quad E, F \vdash e_{2} \Rightarrow v / \text { error }}{E, F \vdash \operatorname{divs}\left(e_{1}, e_{2}\right) \Rightarrow \text { error }}
\end{aligned}
$$

Semantics: casts

$$
\begin{aligned}
& \text { EcastSIntF64 } \frac{E, F \vdash e \Rightarrow \operatorname{Vint~}^{n}}{E, F \vdash\left(\text { int }_{32, \text { Signed }} \rightarrow \text { float }_{64}\right) e \Rightarrow \text { vfloat }_{64} f_{n}} \\
& E, F \vdash e \Rightarrow \operatorname{vfloat}_{64} f \\
& \text { EcastF64SInt64 } \frac{-2^{63} \leq f<2^{63}}{E, F \vdash\left(\text { float }_{64} \rightarrow \text { int }_{64, \text { Signed }}\right) e \Rightarrow \operatorname{Vint}_{64} n_{f}} \\
& \text { EcastF64SInt64Err } \frac{E, F \vdash e \Rightarrow \mathrm{vfloat}_{64} f}{f, F \vdash\left(\text { float }_{64} \rightarrow \text { int }_{64, \text { Signed }}\right) e \Rightarrow \text { error }}
\end{aligned}
$$

Memory Model

\square

Memory Model

Memory Model

Memory Model

Memory Model

Semantic paths:

$$
p \quad::=i d[n][n] \ldots \quad \text { (linear array) }
$$

Memory Model

Semantic paths:

$$
p \quad::=i d[n][n] \ldots \quad \text { (linear array) }
$$

$$
\begin{aligned}
& \operatorname{dest}[i, j][k] \Rightarrow \\
& \operatorname{dest}[i * \operatorname{sizeof}(\operatorname{dest}[0])+j][k]
\end{aligned}
$$

Memory Model

Semantic paths:

$$
p \quad::=i d[n][n] \ldots \quad \text { (linear array) }
$$

$$
\begin{aligned}
& \operatorname{dest}[i, j][k] \Rightarrow \\
& \operatorname{dest}[i * \operatorname{sizeof}(\operatorname{dest}[0])+j][k]
\end{aligned}
$$

$$
E[(a,[])]=42
$$

$$
E[(b,[])]=0.125
$$

$$
E[(t,[0])]=3
$$

$$
E[(s,[1 ; 1])]=7
$$

Semantics: instructions

Step in the semantics (G is the definition of all functions):

Semantics: writing

$$
\begin{gathered}
E, F \vdash q \Rightarrow p \quad p=(i, \vec{z}) \\
E, F \vdash e \Rightarrow v \quad \text { primitive_value }(v) \\
\text { Write } \frac{\Gamma_{F}(p)=\tau \quad v \in \tau \quad P_{F}(i) \geq \text { Mut }}{\mathcal{S}(E, F, q \leftarrow e, k) \rightarrow \mathcal{S}(E[p \mapsto v], F, \text { skip, } k)} \\
\text { WriteErr } \frac{E, F \vdash q \Rightarrow \text { error }}{\mathcal{S}(E, F, q \leftarrow e, k) \rightarrow \mathcal{S}(E, F, \text { error, } k)}
\end{gathered}
$$

Semantics: function call

$$
\begin{aligned}
& G\left(i d_{f}\right)=\text { Internal }\left(F^{\prime}\right) \quad|\vec{a}|=\mid F^{\prime} \text {.sig.sig_args } \mid \\
& E, F \vdash \vec{a} \Rightarrow \vec{p} \quad E(\vec{p})=\vec{v} \quad \vec{v} \in F^{\prime} \text {.sig.sig_args } \\
& \forall i, P_{F}\left(p_{i}\right) \geq P_{F^{\prime}}\left(F_{\text {.params }}^{i}\right) \\
& \forall i, \Gamma_{F}\left(p_{i}\right)=\Gamma_{F^{\prime}}\left(F^{\prime} \text {.params }_{i}\right) \\
& \text { valid_call }\left(E, F \text {, Internal }\left(F^{\prime}\right), p\right) \\
& \forall i j, i \neq j \wedge P_{F^{\prime}}\left(F^{\prime} \text {.params }{ }_{i}\right) \geq \text { Mut } \rightarrow p_{i} \npreceq p_{j} \wedge p_{j} \npreceq p_{i} \\
& \text { Callinternal } \mathcal{S}\left(E, F, \operatorname{call}\left(i d_{v}, i d_{f}, \vec{a}\right), k\right) \rightarrow \mathcal{C}\left(F^{\prime}, \vec{x}, \operatorname{Kreturnto}\left(i d_{v}, E, F, m, k\right)\right) \\
& \forall i, x_{i}=\left(p_{i}, v_{i}\right) \quad m=\left\{\left(p_{i}, F^{\prime} \text {.params }{ }_{i}\right) \mid P_{F^{\prime}}\left(F^{\prime} \text {.params }{ }_{i}\right) \geq \text { Mut }\right\}
\end{aligned}
$$

Semantics: return

$$
\begin{gathered}
\forall(p, i) \in m, E[p]=\operatorname{Varr}-\wedge E^{\prime}[i]=\operatorname{Varr} _ \\
\forall(p, i) \in m, \Gamma_{F}[p]=\Gamma_{F^{\prime}}[i] \\
\text { primitive_value }(v) \\
E_{\text {upd }}=\operatorname{update} \text { env }\left(E, m, E^{\prime}\right) \\
\mathcal{R}\left(E^{\prime}, F^{\prime}, v, \text { Kreturnto }\left(i d_{v}, E, F, m, k\right) \rightarrow \mathcal{S}\left(E_{u p d}\left[i d_{v} \mapsto v\right], F, \text { skip }, k\right)\right.
\end{gathered}
$$

Proof of program

- Environments trivially express the absence of alias
- Anything which is not passed (as mutable) to a called function is not modified
- Multidimensional arrays avoid using non linear arithmetic
- Easy WP computation

Compilation

Compilation

Copy/restore semantics

Safe language with errors

Compilation

Copy/restore semantics
Pointer semantics

Safe language with errors

Compilation

Copy/restore semantics

Safe language with errors

Compilation

Copy/restore semantics

Safe language with errors

Compilation

Copy/restore semantics
Pointer semantics

Safe language with errors

Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$$
\operatorname{ET}\left(\operatorname{divu}\left(e_{1}, e_{2}\right)\right)
$$

$$
=\mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right)
$$

The order of tests is important.

Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$$
\begin{array}{ll}
\mathrm{ET}\left(\operatorname{divu}\left(e_{1}, e_{2}\right)\right) & =\mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right) \\
\mathrm{ET}\left(\left(\text { float }_{64} \rightarrow \operatorname{int}_{32, \text { Signed }}\right) e\right) & =\mathrm{ET}(e)+\left(-2^{31}-1<e<2^{31}\right)
\end{array}
$$

The order of tests is important.

Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$$
\begin{array}{ll}
\operatorname{ET}\left(\operatorname{divu}\left(e_{1}, e_{2}\right)\right) & =\mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right) \\
\mathrm{ET}\left(\left(\mathrm{float}_{64} \rightarrow \operatorname{int}_{32, \text { Signed }}\right) e\right) & =\mathrm{ET}(e)+\left(-2^{31}-1<e<2^{31}\right) \\
\mathrm{ET}\left(\left(\text { float }_{32} \rightarrow \operatorname{int}_{32, \text { Unsigned }}\right) e\right) & =\mathrm{ET}(e)+\left(-1<e<2^{32}\right)
\end{array}
$$

The order of tests is important.

Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$$
\begin{array}{ll}
\left.\mathrm{ET}\left(\operatorname{divu}^{(} e_{1}, e_{2}\right)\right) & =\mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right) \\
\mathrm{ET}\left(\left(\text { float }_{64} \rightarrow \text { int }_{32, \text { Signed }}\right) e\right)= & \mathrm{ET}(e)+\left(-2^{31}-1<e<2^{31}\right) \\
\mathrm{ET}\left(\left(\text { float }_{32} \rightarrow \text { int }_{32, \text { Unsigned }}\right) \mathrm{e}\right)= & \mathrm{ET}(e)+\left(-1<e<2^{32}\right) \\
\mathrm{ET}\left(x\left[i_{1}, \ldots, i_{k}\right]\right) & \mathrm{ET}\left(i_{1}\right)+\ldots+\mathrm{ET}\left(i_{k}\right)+ \\
& \left(i_{1}<_{u} s_{1}\right)+\ldots+\left(i_{k}<_{u} s_{k}\right) \\
& \text { where } s_{1}, \ldots, s_{k} \text { are the size variables of } x
\end{array}
$$

The order of tests is important.

Translation $\mathrm{L}_{2} \rightarrow \mathrm{C} \#$ minor

Translation from L_{2} to $\mathrm{C} \#$ minor is mostly a 1-to-1 translation, except for the following constructions:

$$
\begin{aligned}
\operatorname{TrExp}\left(i d\left[e_{1}, \ldots, e_{k}\right]\right)= & *\left(i d^{t}+\operatorname{sizeof}(i d[0, \ldots, 0]) \times\right. \\
& \left.\left(\left(\left(\left(e_{1}^{t} \times s_{2}^{t}+e_{2}^{t}\right) \times s_{3}^{t}+\ldots\right) \ldots\right) \times s_{k}^{t}+e_{k}^{t}\right)\right) \\
& \text { where } e^{t}=\operatorname{TrExp}(e)
\end{aligned}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor

Translation from L_{2} to $\mathrm{C} \#$ minor is mostly a 1-to-1 translation, except for the following constructions:

$$
\begin{aligned}
\operatorname{TrExp}\left(i d\left[e_{1}, \ldots, e_{k}\right]\right)= & *\left(i d^{t}+\operatorname{sizeof}(\text { id }[0, \ldots, 0]) \times\right. \\
& \left.\left(\left(\left(\left(e_{1}^{t} \times s_{2}^{t}+e_{2}^{t}\right) \times s_{3}^{t}+\ldots\right) \ldots\right) \times s_{k}^{t}+e_{k}^{t}\right)\right) \\
& \text { where } e^{t}=\operatorname{TrExp}(e) \\
\operatorname{TrExp}\left(e_{1} \ll_{32} e_{2}\right)= & \operatorname{TrExp}\left(e_{1}\right) \ll_{32}\left(\operatorname{TrExp}\left(e_{2}\right) \& 31\right)
\end{aligned}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathrm{C} \#$ minor

Translation from L_{2} to $\mathrm{C} \#$ minor is mostly a 1-to-1 translation, except for the following constructions:

$$
\left.\begin{array}{rl}
\operatorname{TrExp}\left(i d\left[e_{1}, \ldots, e_{k}\right]\right)= & *\left(i d^{t}+\operatorname{sizeof}(i d[0, \ldots, 0]) \times\right. \\
& \left.\left(\left(\left(\left(e_{1}^{t} \times s_{2}^{t}+e_{2}^{t}\right) \times s_{3}^{t}+\ldots\right) \ldots\right) \times s_{k}^{t}+e_{k}^{t}\right)\right) \\
& \text { where } e^{t}=\operatorname{TrExp}(e)
\end{array}\right] \begin{aligned}
\operatorname{TrExp}\left(e_{1} \ll_{32} e_{2}\right)= & \operatorname{TrExp}\left(e_{1}\right) \ll_{32}\left(\operatorname{TrExp}\left(e_{2}\right) \& 31\right) \\
\operatorname{TrStmt}(\text { error })= & \text { loop }\{\operatorname{abort}() ;\}
\end{aligned}
$$

Formally verified compilation

Formally verified compilation

Every property on the source program is also verified by the generated program.

Difficulties

- Ensure generated tests are correct and complete.

■ Maintain a correspondance between our environment and the memory of C\#minor.

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V} \quad \mathbb{V}=\{\text { Visible }\} \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

$$
\mathbb{V}=\{\operatorname{Visible}\} \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

$$
\begin{aligned}
\mathbb{V}=\{\text { Visible }\} & \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\} \\
t(n, s) & =(42,0, \text { Visible }) \\
t(n, s[0]) & =(71,0, \text { Visible })
\end{aligned}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

$$
\begin{aligned}
\mathbb{V}=\{\text { Visible }\} & \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\} \\
t(n, s) & =(42,0, \text { Visible }) \\
t(n, s[0]) & =(71,0, \text { Visible })
\end{aligned}
$$

```
n+1
f(u: mut [[i64; n]; m], m n: u64)
```


Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

$$
\mathbb{V}=\{\operatorname{Visible}\} \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\}
$$

$$
\begin{array}{ll}
t(n, s) & =(42,0, \text { Visible }) \\
t(n, s[0]) & =(71,0, \text { Visible })
\end{array}
$$

$$
n+1
$$

f(u: mut [[i64; n]; m], m n: u64)

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

$$
\mathbb{V}=\{\operatorname{Visible}\} \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\}
$$

$$
\begin{array}{ll}
t(n, s) & =(42,0, \text { Visible }) \\
t(n, s[0]) & =(71,0, \text { Visible })
\end{array}
$$

$$
n+1 \quad \mathrm{f}(\mathrm{u}: \operatorname{mut}[[\mathrm{i} 64 ; \mathrm{n}] ; \mathrm{m}], \mathrm{m} \mathrm{n}: \mathrm{u} 4)
$$

$$
\begin{array}{ll}
t^{\prime}(n+1, u) & =(42,0, \text { Visible }) \\
t^{\prime}(n+1, u[0]) & =(71,0, \text { Visible })
\end{array}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Visibility)

$$
t: \mathbb{N} \times \mathbb{P} \rightarrow \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{V}
$$

$$
\mathbb{V}=\{\operatorname{Visible}\} \cup\{\operatorname{Hidden}(p) \mid p \in \mathbb{P}\}
$$

$$
\begin{array}{ll}
t(n, s) & =(42,0, \text { Visible }) \\
t(n, s[0]) & =(71,0, \text { Visible })
\end{array}
$$

$n+1 \quad \mathrm{f}(\mathrm{u}:$ mut $[$ [i64; n]; m], m n: u64)

$$
\begin{array}{ll}
t^{\prime}(n+1, u) & =(42,0, \text { Visible }) \\
t^{\prime}(n+1, u[0]) & =(71,0, \text { Visible }) \\
t^{\prime}(n, s) & =(42,0, \operatorname{Hidden}(u)) \\
t^{\prime}(n, s[0]) & =(71,0, \operatorname{Hidden}(u[0]))
\end{array}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Invariants)

Synchronisation between environments and C\#minor's memory:

$$
\begin{aligned}
\forall n p l v, & E_{n}[p]=\operatorname{Varr} / v \rightarrow \\
& \exists b \circ s, \quad \\
& t(n, p)=(b, o, s) \wedge \\
& s=\operatorname{Visible} \rightarrow \\
\forall i, & 0 \leq i<|/ v| \rightarrow \\
& M\left[\left(b, o+i \times \operatorname{sizeof}\left(\Gamma_{F_{n}}[p+[0]]\right)\right)\right]=\text { transl_value }(l v[i])
\end{aligned}
$$

Translation $\mathrm{L}_{2} \rightarrow \mathbf{C} \#$ minor - Proof (Invariants)

Synchronisation between environments and C\#minor's memory:

$$
\begin{aligned}
\forall n p l v, & E_{n}[p]=\operatorname{Varr} / v \rightarrow \\
\exists b \circ s, \quad & t(n, p)=(b, o, s) \wedge \\
& s=\operatorname{Visible} \rightarrow \\
& \forall i, \quad 0 \leq i<|/ v| \rightarrow \\
& M\left[\left(b, o+i \times \text { sizeof }\left(\Gamma_{F_{n}}[p+[0]]\right)\right)\right]=\text { transl_value }(\mid v[i])
\end{aligned}
$$

Separation of visible paths in the translation function:

$$
\begin{aligned}
\forall n(i, I) b o, & t(n,(i, l))=(b, o, \text { Visible }) \wedge P_{F_{n}}(i) \geq \text { Mut } \rightarrow \\
& \left(\forall m p^{\prime} b^{\prime} o^{\prime}, m<n \wedge t\left(m, p^{\prime}\right)=\left(b^{\prime}, o^{\prime}, \text { Visible }\right) \rightarrow b \neq b^{\prime}\right) \wedge \\
& \left.\left.\left(\forall p^{\prime} b^{\prime} o^{\prime},(i, l) \neq p^{\prime} \wedge t\left(n, p^{\prime}\right)=\left(b^{\prime}, o^{\prime},{ }_{2}\right)\right)\right) \rightarrow b \neq b^{\prime}\right)
\end{aligned}
$$

Formal verification

```
Coq
Theorem transl_stmt_sem_preservation:
    forall p hfuncs Habort tp s s' ts t,
        ...
        transl_program' hfuncs Habort p = OK tp ->
        match_states p hfuncs Habort s ts }
        step_events (genv_of_program p) s t s' }
        exists ts', plus Csharpminor.step (Genv.globalenv tp) ts t ts' ^
                match_states p hfuncs Habort s' ts'.
Theorem transl_program_correct hfuncs (p: program):
    forall tp,
        transl_program hfuncs p = OK tp }
        forward_simulation (SemanticsBlocking.semantics p)
            (Csharpminor.semantics tp).
```


Stats

Coq	Code / Spec	Proof
Syntax and types	814	283
Common semantics definitions and proofs	1403	1040
L $_{1}$ semantics	882	495
L $_{2}$ semantics	367	107
$\mathrm{~L}_{1} \rightarrow \mathrm{~L}_{2}$	887	1642
L $_{2} \rightarrow$ Cminor	1901	2910
Typing	616	104
Safety	1056	2776
Miscellaneous	979	936

Stats

Coq	Code / Spec	Proof
Syntax and types	814	283
Common semantics definitions and proofs	1403	1040
L $_{1}$ semantics	882	495
L $_{2}$ semantics	367	107
L $_{1} \rightarrow$ L $_{2}$	887	1642
L $_{2} \rightarrow$ Cminor	1901	2910
Typing	616	104
Safety	1056	2776
Miscellaneous	979	936

$+\sim 2000$ lines of OCaml (parser, type inference and simplifications)

Generated code: addition of vectors

```
void add_vectors(a: [i64; n], b: [i64; n], dest: mut [i64; n], n: u64) {
        for i: u64 = 0 .. n {
        dest[i] = a[i] + b[i]
    }
}
```


Generated code: addition of vectors (Assembler)

```
add_vectors: ; %rdi = a, %rsi = b, %rdx = dest, %rcx = n
    xorq %rax, %rax ; %rax = i}\leftarrow
.L100:
    cmpq %rcx, %rax ; for loop condition
    jae.L101 ; i }\geqslantn n end of loo
    cmpq %rcx, %rax ; array bound check
    jae.L102 ; i }\geqslantn=>\mathrm{ error
    movq 0(%rdi,%rax,8), %r8 ; %r8 \leftarrowa[i]
    movq 0(%rsi,%rax,8), %r9 ; %r9}\leftarrowb[i
    leaq 0(%r8,%r9,1), %r8 ; %r8 \leftarrow%%r8 + %r9 = a[i] + b[i]
    movq %r8, 0(%rdx,%rax,8) ; dest[i] \leftarrow %r8 = a[i] + b[i]
    leaq 1(%rax), %rax ; i}\leftarrowi+
    jmp .L100
.L102: ; translation of error
    call abort
    jmp .L102
.L101:
    ret
```

Conclusion

We now have

A language

- safe
- suitable for computer algebra algorithms

■ simplifying proof of programs (no aliasing, no memory, mutability)

We now have

A language

- safe
- suitable for computer algebra algorithms
- simplifying proof of programs (no aliasing, no memory, mutability)

A formally verified compiler

- generating correct code semantics preservation theorem proved with Coq
- a bit of optimization

Future work

- More constructions
- array views

■ records

- malloc / free (in progress)

Future work

■ More constructions

- array views
- records
- malloc / free (in progress)
- Programs logic (\Rightarrow functional correctness)

Future work

- More constructions
- array views
- records
- malloc / free (in progress)
- Programs logic (\Rightarrow functional correctness)
- Optimizations / performance

Thanks !

Semantics: evaluation of path

$$
\text { EvPNil } \frac{\forall k, E, F \vdash u_{k} \Rightarrow \operatorname{Vint}_{64} n_{k}}{E, F \vdash \vec{i} \Rightarrow \vec{v}} \begin{gathered}
E, F, _[] \Rightarrow[] \\
\text { build_index } \vec{v} \vec{n}=\text { Some } j \\
\text { valid_index } \vec{v} \vec{n}
\end{gathered}
$$

Semantics: evaluation of path - error cases

$$
\begin{gathered}
\forall k, E, F \vdash u_{k} \Rightarrow \operatorname{Vint}_{64} n_{k} \\
E, F \vdash \vec{i} \Rightarrow \vec{v} \\
\text { build_index } \vec{v} \vec{n}=\text { Some } j \\
\text { नvalid_index } \vec{v} \vec{n} \\
E, F, \vec{u}:: \vec{l} \vdash(\text { Scell } \vec{i}):: \vec{s} \Rightarrow \text { error }
\end{gathered}
$$

$$
\begin{gathered}
\forall k, E, F \vdash u_{k} \Rightarrow \operatorname{Vint}_{64} n_{k} \\
E, F \vdash \vec{i} \Rightarrow \text { error } \\
E, F, \vec{u}:: \vec{l} \vdash(\text { Scell } \vec{i}):: \vec{s} \Rightarrow \text { error }
\end{gathered}
$$

Example: Eratosthene's sieve

```
fun eratosthene(prime: mut [bool; N], N: u64) {
    if N < 2 return;
    prime[0u32] = false;
    prime[1u32] = false;
    for k: u64 = 4 .. N step 2
        prime[k] = false;
    let i: u64 = 3;
    while (i * i < N) {
        if prime[i] {
            for j: u64 = i .. (N / i + 1) step 2
                prime[i * j] = false;
        }
        i = i + 1
    }
}
```


Example: Block Matrix Multiplication

```
fun block_mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p],
    m n p bs: u64) {
    let s: i64 = 0;
    for I: u64 = 0 .. m step bs {
        let Imax: u64 = min(m, I + bs);
        for J: u64 = 0 .. p step bs {
            let Jmax: u64 = min(p, J + bs);
            for K: u64 = 0 .. n step bs {
                let Kmax: u64 = min(n, K + bs);
                for i: u64 = I .. Imax
                    for j: u64 = J .. Jmax {
                                s = 0;
                                for k: u64 = K .. Kmax
                                s = s + a[i, k] * b[k, j];
                                dest[i, j] = dest[i, j] + s
                    }
            }
        }
    }
```


Example: Gauss

```
fun gauss(A: mut [f64; n, m], n m: u64) {
    let r: u64 = 0;
    for j: i64 = 0 .. m {
        let k: i64 = search_max_abs(A, n, m, r, j);
        if (k = -1) break;
        if A[k, j] F= 0. {
            divide_line_by_const(A, n, m, (u64) k, A[k, j]);
            if (u64) k f= r
                exchange_lines(A, n, m, (u64) k, r);
            for i: u64 = 0 .. n {
                if i }\not=\textrm{r
                        add_lines(A, n, m, i, j, - A[i, j]);
            }
                r = r + 1
        }
    }
}
```


Example: Dot product of complex vectors (BLAS)

```
fun zdotu(n: u64, zx: [f64; 2*n], incx: i32,
            zy: [f64; 2*n], incy: i32, res: mut [f64; 2]) {
    res[0] = 0.; res[1] = 0.;
    if n \leqslant 0 return;
    if incx = 1 && incy = 1 {
        for i: u64 = 0 .. (2 * n) step 2 {
            res[0] = res[0] + zx[i] * zy[i] - zx[i+1] * zy[i+1];
            res[1] = res[1] + zx[i+1] * zy[i] + zx[i] * zy[i+1];
        }
    } else {
        let ix: i32 = 1; let iy: i32 = 1;
        if (incx < 0) ix = (-(i32)(2*n)+1)*incx + 1;
        if (incy < 0) iy = (-(i32)(2*n)+1)*incy + 1;
        for i: u64 = 0 .. n {
            res[0] = res[0] + zx[ix] * zy[iy] - zx[ix+1] * zy[iy+1];
            res[1] = res[1] + zx[ix+1] * zy[iy] + zx[ix] * zy[iy+1];
            ix = ix + 2 * incx; iy = iy + 2 * incy;
        } } }
```


Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$\operatorname{ET}\left(\operatorname{divu}\left(e_{1}, e_{2}\right)\right)$
$=\operatorname{ET}\left(e_{1}\right)+\operatorname{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right)$

The order of tests is important.

Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$$
\begin{aligned}
& \operatorname{ET}\left(\operatorname{divu}\left(e_{1}, e_{2}\right)\right) \\
& \mathrm{ET}\left(\operatorname{divs}\left(e_{1}, e_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right) \\
= & \mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+ \\
& \left(e_{2} \neq 0 \wedge\left(e_{1} \neq \text { min_sint } \vee e_{2} \neq-1\right)\right)
\end{aligned}
$$

The order of tests is important.

Translation $\mathbf{L}_{1} \rightarrow \mathbf{L}_{2}$: test generation

$$
\begin{aligned}
& \operatorname{ET}\left(\operatorname{divu}\left(e_{1}, e_{2}\right)\right) \\
& =\operatorname{ET}\left(e_{1}\right)+\operatorname{ET}\left(e_{2}\right)+\left(e_{2} \neq 0\right) \\
& \operatorname{ET}\left(\operatorname{divs}\left(e_{1}, e_{2}\right)\right) \\
& =\mathrm{ET}\left(e_{1}\right)+\mathrm{ET}\left(e_{2}\right)+ \\
& \left(e_{2} \neq 0 \wedge\left(e_{1} \neq \text { min_sint } \vee e_{2} \neq-1\right)\right) \\
& \mathrm{ET}\left(\left(\text { int }_{32, \text { Unsigned }} \rightarrow \text { int }_{64, \text { Unsigned }}\right) e\right)=\operatorname{ET}(e) \\
& \operatorname{ET}\left(\left(\text { int }_{64, \text { Unsigned }} \rightarrow \text { int }_{32, \text { Unsigned }}\right) e\right)=\operatorname{ET}(e) \\
& \text { ET }((\text { int } \rightarrow \text { float }) e) \\
& =\mathrm{ET}(e) \\
& \operatorname{ET}\left(\left(\text { float }_{32} \rightarrow \text { int }_{32, \text { Signed }}\right)\right. \text { e) } \\
& =\operatorname{ET}(e)+\left(-2^{31} \leq e<2^{31}\right) \\
& \operatorname{ET}\left(\left(\text { float }_{64} \rightarrow \text { int }_{32, \text { Signed }}\right) e\right) \\
& =\operatorname{ET}(e)+\left(-2^{31}-1<e<2^{31}\right) \\
& \text { ET }\left(\left(\text { float }_{32} \rightarrow \text { int }_{32, \text { Unsigned }}\right) e\right) \\
& =\operatorname{ET}(e)+\left(-1<e<2^{32}\right) \\
& \mathrm{ET}\left(\left(\text { float }_{64} \rightarrow \text { int }_{32, \text { Unsigned }}\right) e\right) \\
& =\mathrm{ET}(e)+\left(-1<e<2^{32}\right) \\
& \operatorname{ET}\left(x\left[i_{1}, \ldots, i_{k}\right]\right) \\
& \left(i_{1}<{ }_{u} s_{1}\right)+\ldots+\left(i_{k}<_{u} s_{k}\right) \\
& \text { where } s_{1}, \ldots, s_{k} \text { are the size variables of } x
\end{aligned}
$$

The order of tests is important.

Generated code: addition of vectors $\left(L_{1}\right)$

```
void add_vectors(a: [i64; n], b: [i64; n], dest: mut [i64; n], n: u64)
{
    u64 $8; u64 $9; u64 i;
    /* $9 = n; */
    i = 0u64;
    $8 = n;
    while true {
        if (i <u $8) {
            dest[i] = a[i] + b[i];
            i = i + 1u64;
        } else break;
    }
}
```


Generated code: addition of vectors $\left(L_{2}\right)$

```
void add_vectors(a: [i64; n], b: [i64; n], dest: mut [i64; n], n: u64)
{
    u64 $8; u64 $9; u64 i;
    /* $9 = n; */
    i = 0u64;
    $8 = n;
    while true {
        if (i <u $8) {
            assert (i <u $9);
            dest[i] = a[i] + b[i];
            i = i + 1u64;
            } else break;
    }
}
```


Generated code: addition of vectors (Cminor)

```
"add_vectors"('a', 'b', 'dest', 'n') : long -> long -> long -> long -> void
{
    var '$9', '$8', 'i';
    goto 'code';
        'error': "abort"() : void;
        goto 'error';
        'code': '$9' = 'n'; '$9' = 'n'; '$9' = 'n'; 'i' = 0LL; '$8' = 'n';
        {{ loop {
            {{ if ('i' <lu '$8') {
                                    if ('i' <lu '$9') { /*skip*/ }
                        else { goto 'error'; }
                                int64['dest' +l 8LL *l 'i'] =
                            int64['a' +l 8LL *l 'i'] +l int64['b' +l 8LL *l 'i'];
                            'i' = 'i' +l 1LL;
                            } else { exit 1; }
            }}
            }
        }}
}
```

