A language for computer algebra
and its formally verified compiler

Non-permanent LMF seminar

January 30, 2024

Josué Moreau

[]
universite -
PARIS-SACLAY lreia—

Computer Algebra

m Algorithms working with mathematical objects (matrices, polynomials, etc)

m Efficiency = Specialized libraries: BLAS (linear algebra),
GMP (multi-precision integers), etc

Josué Moreau A language for computer algebra and its formally verified compiler

Bugs

Example (GMP < 5.1.1)

mpz_pown_ui(r, b, e, m); r < b® mod m
Computes garbage if b is over 15000 decimal.

= We want to verify computer algebra programs.

Josué Moreau A language for computer algebra and its formally verified compiler

Bugs

Example (GMP < 5.1.1)

mpz_pown_ui(r, b, e, m); r < b® mod m
Computes garbage if b is over 15000 decimal.

= We want to verify computer algebra programs.

Example (GMP 6.2.0)

MacOS Xcode 11 prior to 11.3 miscompiles GMP, leading to crashes and miscomputation.

= We have to be sure compilers don't introduce bugs.

Josué Moreau A language for computer algebra and its formally verified compiler

FRESCO: Fast and Reliable Symbolic Computation

Turn the Coq proof assistant
into an environment where

m fast implementations

Computer Algebra of comput_er algebra alggrlthms
Semantics can be written and verified

High-Level Code . . .
g m machine code will be executed in Coq

Verified Refinements

<=

m results will be used in proofs
Optimized Code + Proof of programs

. Verified Compilation

Machine Code
Execution

Josué Moreau A language for computer algebra and its formally verified compiler

FRESCO: Fast and Reliable Symbolic Computation

Turn the Coq proof assistant
into an environment where

m fast implementations

Computer Algebra of comput_er algebra alggrlthms
Semantics can be written and verified

High-Level Code . . .
g m machine code will be executed in Coq

Verified Refinements

<=

m results will be used in proofs
Optimized Code + Proof of programs

. Verified Compilation

Machine Code
Execution

Josué Moreau A language for computer algebra and its formally verified compiler

FRESCO: Fast and Reliable Symbolic Computation

Turn the Coq proof assistant
into an environment where

m fast implementations

Computer Algebra of comput_er algebra alggrlthms
Semantics can be written and verified

High-Level Code . . .
g m machine code will be executed in Coq
Verified Refinements

<=

m results will be used in proofs
Optimized Code + Proof of programs

. Verified Compilation My work

Machine Code

Execution

Josué Moreau A language for computer algebra and its formally verified compiler

Goals

m a low-level language:

m suitable for computer algebra algorithms (e.g., arrays, matrices)
m safe (e.g., no access outside the memory of the program)
m with constructions simplifying the proof of programs (e.g., no aliasing)

= a formally verified compiler for this language (such as CompCert)

Josué Moreau A language for computer algebra and its formally verified compiler

Some existing approaches

Rust : safe language
4+ many interesting constructions
- but the compiler is not verified

Josué Moreau A language for computer algebra and its formally verified compiler

Some existing approaches

Rust : safe language
4+ many interesting constructions
- but the compiler is not verified
CakeML (SML) : safe language
+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

Josué Moreau A language for computer algebra and its formally verified compiler

Some existing approaches

Rust : safe language

4+ many interesting constructions

- but the compiler is not verified
CakeML (SML) : safe language

+ formally verified compiler

- but poorly suited for libraries such as GMP and BLAS
VST /CompCert (C) : unsafe language

-+ user can prove safety and correctness

+ formally verified compiler (CompCert)

Josué Moreau A language for computer algebra and its formally verified compiler

Some existing approaches

Rust : safe language
4+ many interesting constructions
- but the compiler is not verified

CakeML (SML) : safe language
+ formally verified compiler
- but poorly suited for libraries such as GMP and BLAS

VST /CompCert (C) : unsafe language
-+ user can prove safety and correctness
+ formally verified compiler (CompCert)
Why3 (WhyML) and frama-C (C) : unsafe languages
<+ user can prove safety and correctness more automatically (ex: WhyMP)
- but the compiler (at least extraction) is not proved for Why3
- even if we compile a verified ACSL program with CompCert,
no guarantee that C semantics of CompCert and frama-C agree

Josué Moreau A language for computer algebra and its formally verified compiler

Table of contents

Design of the language
Semantics

Compilation

A language for computer algebra and its formally verified compiler

Josué Moreau

Design of the language

Matrix Multiplication

for i: u64 =0 .. m
for j: ubst = 0 p {
dest[i, j] = 0;
for k: u64 = 0 .. n
dest[i, j] «
}

fun mul_matrix(a: [i64; m, n], b:
m: ub4, n: ub4, p: u64) {

[i6%4; n, p]l, dest: mut [i64; m, pl,

dest[i, j] + ali, kI * bl[k, jl

Josué Moreau

A language for computer algebra and its formally verified compiler

Matrix Multiplication

fun mul_matrix(a: [i6%4; m, n], b: [i64; n, p], dest: mut [i64; m, p],
m: ub4, n: ub4, p: u64) {
for i: u64 =0 .. m

for j: ubst = 0 p {
dest[i, j] = 0;
for k: u64 = 0 .. n
dest[i, j] « dest[i, j1 + ali, k] * b[k, j]
}

|

Array size passed explicitly as
arguments

Josué Moreau A language for computer algebra and its formally verified compiler

Matrix Multiplication

Same size for multiple arrays

fun mul_matrix(a: [i6%4; m,‘g], b: [i64; n, pl, dest: mut [i64;\m, pl,
m: ub4, n: ub4, p: u64) {

for i: u64 =0 .. m
for j: ubst = 0 p {
dest[i, j] = 0;
for k: u64 = 0 .. n
dest[i, j] « dest[i, j1 + ali, k] * b[k, j]
}

Josué Moreau

|

Array size passed explicitly as
arguments

A language for computer algebra and its formally verified compiler

Matrix Multiplication

Same size for multiple arrays

fun mul_matrix(a: [i6%4; m,‘g], b: [i64; n, pl, dest: mut [i64;\m, pl,
m: ub4, n: ub4, p: u64) {
for i: u64 =0 .. m

for j: ubst = 0 p {
dest[i, j] = 0;
for k: u64 = 0 .. n
dest[i, j] « dest[i, j1 + ali, k] * b[k, j]
}

|

Array size passed explicitly as
arguments

Distinction mutable/persistent arrays
+ borrowing
= proof of program

Josué Moreau A language for computer algebra and its formally verified compiler

Paths and expressions

Syntactic path:

qg == id[é|[é€]...
Expressions:
e = ¢ constants
| (11 — T2)e cast
| opi(e) unary operations (not, neg)
| opa(er,e2) binary operations (+, —, %, /,>,...)
| q read

Josué Moreau A language for computer algebra and its formally verified compiler

Instructions

skip

g+ e writing

id” < f(q1, ..., qn) function call
S1; S0 sequence
return e’

if e {s1} else {s2}

loop {s}

break | continue

error

Josué Moreau A language for computer algebra and its formally verified compiler

Functions

}

sig ::= {args = T;res = T}

sig = sig

params = id

vars —id

tenv. =id—~T (written I'r in next slides)
szenv = id — [[€],...] (written XF in next slides)
penv. = id — {Shared,Mut,own} (written pr in next slides)
body =S

And some properties on functions (e.g. Vx,Vs € ¥g(x), pr(s) = Shared).

Josué Moreau

A language for computer algebra and its formally verified compiler

Example: Multiplication of polynomials

fun mul_poly(a: [i64; m], b: [i64; n], dest: mut [i64; m + n - 1],
mn: u6s) {
for i: u64 =0 .. m
for j: ub4 = 0 .. n
dest[i + j] = dest[i + j] + a[i] = b[j];

Josué Moreau A language for computer algebra and its formally verified compiler

11/ 32

Example: Multiplication of polynomials

fun mul_poly(a: [i64; m], b: [i64; n], dest: mut [i64; m + n - 1],
mn: u6s) {
for i: u64 = 0 .. m
for j: ub4 = 0 .. n
dest[i + j] = dest[i + j] + a[i] = b[j];

fun mul_poly(a: [i64; da + 1], b: [i64; db + 1],
dest: mut [164; da + db + 1],
da db: u6s4) {
for i: ub4 = 0 .. (da + 1)
for j: ubst =0 .. (db + 1)
dest[i + j] = dest[i + j] + a[i] * b[jl;

Josué Moreau A language for computer algebra and its formally verified compiler

Semantics

Semantics: operations and errors

E.FFe =vint i E,.FF e = vint iy
o #£ 0 il # min_sint V ip # —1

Edi
e E,F F divs(er, &) = vint (ir/i2)

Josué Moreau A language for computer algebra and its formally verified compiler

Semantics: operations and errors

E.FFe =vint i E,.FF e = vint iy
o #£ 0 il # min_sint V ip # —1

Edivs
" E,F I divs(er, &) = vint (i1 /i)
E,FFe =vintiy E,FF e = vint i
i =0V (ih =min_sint A ip = —1)
EdivsErr

E,F F divs(e1, e2) = error

Josué Moreau A language for computer algebra and its formally verified compiler 12 / 32

Semantics: operations and errors

E.FFe =vint i E,.FF e = vint iy
] o #£ 0 il # min_sint V ip # —1
Edivs - p—
E,F F divs(er, e2) = vint (i1/i2)

E,FFe = vint i E,FF e = vint iy
i =0V (ih =min_sint A ip = —1)
EdivsErr -
E,F +divs(e, &2) = error

E,FF e = error E,FF e = v/error
E, F - divs(e;, e3) = error

EdivsErrl

Josué Moreau A language for computer algebra and its formally verified compiler 12 / 32

Semantics: casts

E,FFe=vint n

EcastSIntF64 -
E,FF (1nt32,Signed — ﬂoat64)e = Vfloatgq f,

E,FF e= vfloatgy f
—203 < f <288

E,FF (float64 — int64,5,-g,,ed)e = Vintgq nf

EcastF64SInt64

E,FF e= vfloatg f
f<—208vf>20

EcastF64SInt64Err -
E,F |- (floatgs — intey Signed)€ = error

Josué Moreau A language for computer algebra and its formally verified compiler 13 / 32

Memory Model

Josué Moreau ge for computer algebra and its formally verified compiler

Memory Model

Josué Moreau A language for computer algebra and its formally verified compiler

Memory Model

Josué Moreau A language for computer algebra and its formally verified compiler

Memory Model

Josué Moreau A language for computer algebra and its formally verified compiler

Memory Model

/ Semantic paths:
A& id[n][n]...

p = (linear array)

t——| 3| 1
s— |1 4
6 || 7

Josué Moreau A language for computer algebra and its formally verified compiler

Memory Model

L= Semantic paths:
2 42 p == id[n][n]... (linear array)
b———0.125 dest[i, j][k] =
dest[i * sizeof(dest[0]) + j][K]
t—| 3 | 1
s—— || 1 4
6|7

Josué Moreau A language for computer algebra and its formally verified compiler

Memory Model

E;

t— | 3
s—— || 1
6 H

Josué Moreau

Semantic paths:
p == id[n][n]... (linear array)

dest[i, j][k] =
dest[i * sizeof(dest[0]) + j][K]

E[(a, [))] = 42
E[(b,]))] = 0.125
E[(t,[0])] =3
El(s, [1;1])] =7

A language for computer algebra and its formally verified compiler

14 / 32

Semantics: instructions

Step in the semantics (G is the definition of all functions):

G st— st

st == S(E,F,s, k) regular state

| C(F,V,k call state

| R(E,F,v,k) return state

k = Kstop end of program

| Kseq(s, k) sequence
| Kloop(s, k) loop
|

Kreturnto(id?, E,F,m k) return

Josué Moreau A language for computer algebra and its formally verified compiler

Semantics: writing

E,FFgq=p p=1(i2)
E.FFe=v primitive_value(v)
FF(p) =T veT PF(i) > Mut

"
T S(EF,q e, k) = S(E[p s v], F, skip, k)

E.FIq= error

WriteE
T S(E,F,q — e, k) — S(E, F, error, k)

Josué Moreau A language for computer algebra and its formally verified compiler 16 / 32

Semantics: function call

G(idf) = Internal(F’) |a| = |F.sig.sig_args|
E.Fra=p E(p)=v V € F'.sig.sig_args
Vi, Pe(p;i) > Pg:(F.paranms;)
Vi,T'r(pi) = T/ (F'.params;)
valid_call(E, F,Internal(F’), p)
Vij,i# j N Pe(F .params;) > Mut — p; A pj A pj 2 pi

S(E, F,caw\(id,, ids, 3), k) — C(F', X, kreturnto(id,, E, F, m, k))
Vi, xi = (pi, vi) m = {(pi, F'.params;) | Pr/(F'.params;) > Mut}

Calllnternal

Josué Moreau A language for computer algebra and its formally verified compiler 17 / 32

Semantics: return

V(p,i) € m, E[p| = varr _ A E'[i] =varr _
V(p,i) € m,Tg[p] = T'r]i]
primitive_value(v)

E.pd = update_env(E, m, E')

R(E',F',v,kreturnto(id,, E, F, m, k) = S(E,pqlid, — v], F,skip, k)

Return

Josué Moreau A language for computer algebra and its formally verified compiler

Proof of program

m Environments trivially express the absence of alias
m Anything which is not passed (as mutable) to a called function is not modified
m Multidimensional arrays avoid using non linear arithmetic

m Easy WP computation

Josué Moreau A language for computer algebra and its formally verified compiler

Compilation

Compilation

Copy/restore semantics

Safe language with errors

Ly

Josué Moreau A language for computer algebra and its formally verified compiler

Compilation

Copy/restore semantics Pointer semantics

Safe language with errors

Ly

C# minor

A

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

Copy/restore semantics Pointer semantics

Safe language with errors

L Ctminor |- SOMPCEt | Assembler

A

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

Copy/restore semantics Pointer semantics

Safe language with errors

L, > Loy C#minor - GomeCert | Assembler

/

Language with undefined
behaviors

A

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Compilation

Copy/restore semantics Pointer semantics

Safe language with errors

/

Ly

Add dynamic
tests

Ctminor |- SOMPCEt | Assembler

A

Lo

/

Language with undefined
behaviors

Josué Moreau A language for computer algebra and its formally verified compiler 20 / 32

Translation L; — L,: test generation

ET(divu(er, &2)) = ET(e;) H ET(e2) + (&2 #0)

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L; — L,: test generation

ET(divu(er, &2)) = ET(e;) H ET(e2) + (&2 #0)
ET((f'l.oat64 — int32,Signed)e) = ET(e) +- (—231 —l<e< 231)

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L; — L,: test generation

ET(divu(er, €)) = ET(ey) +ET(e2) + (e2 # 0)
ET((f'l.oat64 — int32,Signed)e) = (e) (2Bl _l1<e< 231)
ET((floatsy — intspunsigned)e) — ET(e) ++ (=1 < e < 2%)

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 21 /32

Translation L; — L,: test generation

ET(divu(er, &2)) = ET(e;) H ET(e2) + (&2 #0)
ET((floatgs — intgo signed)e) = eT(e) H (=23 -1 < e< 23
ET((floatgg — intgy ynsigned)€) — ET(e) + (—1 < e <2%)

ET(X[i1y ey ik]) = ET(i) H ... H ET(ix)+H

(il <y 51) +H ... H (ik <y Sk)
where s1, ..., s, are the size variables of x

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor

Translation from Ls to C#minor is mostly a 1-to-1 translation,
except for the following constructions:

Trexp(idfer, ..., &) = *(id" + sizeof(id[0,...,0])x
((((ef x sb+eb)yxst+..)..)xsf+ef))

where e' = TrExp(e)

Josué Moreau A language for computer algebra and its formally verified compiler 22 /32

Translation L, — C#minor

Translation from Ls to C#minor is mostly a 1-to-1 translation,
except for the following constructions:

Trexp(idfer, ..., &) = *(id" + sizeof(id[0,...,0])x
((((ef x sb+eb)yxst+..)..)xsf+ef))

where e' = TrExp(e)

Trexp(e; <<32 &) = Trexp(e)) <<s2 (Trexp(e2) & 31)

Josué Moreau A language for computer algebra and its formally verified compiler 22 /32

Translation L, — C#minor

Translation from Ls to C#minor is mostly a 1-to-1 translation,
except for the following constructions:

Trexp(idfer, ..., &) = *(id" + sizeof(id[0,...,0])x
((((ef x sb+eb)yxst+..)..)xsf+ef))

where e' = TrExp(e)
Trexp(e; <<32 &) = Trexp(e)) <<s2 (Trexp(e2) & 31)

Trstmt(error) = loop {abort(); }

Josué Moreau A language for computer algebra and its formally verified compiler

Formally verified compilation

Josué Moreau

relation

previous source - next
state instruction " state

language
semantics

between states

assembly

previous |
state program

A language for computer algebra and its formally verified compiler

concrete exe-
cution

23/ 32

Formally verified compilation

previous

state

relation

source

instruction

next
state

language
semantics

between states

previous

state

assembly

program

concrete exe-
cution

Every property on the source program is also verified by the generated program.

Josué Moreau

A language for computer algebra and its formally verified compiler

Difficulties

m Ensure generated tests are correct and complete.

m Maintain a correspondance between our environment and the memory of C#minor.

Josué Moreau A language for computer algebra and its formally verified compiler 24 / 32

Translation L, — C#minor - Proof (Visibility)

t:NxP—-N"xNxV

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}

o |

|

Josué Moreau

A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}
: L t(n,s) = (42,0, visible)
> { ! \ ! t(n,s[0]) = (71,0,visible)

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}

: t(n,s) = (42,0, visible)
> { ! \ ! t(n,s[0]) = (71,0,visible)

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}

: t(n,s) = (42,0, visible)
> { ! \ ! t(n,s[0]) = (71,0,visible)

6 7

n+1 f(u: mut [[16%4; nl; m], m n: u6s)
u { 1 \ 4
6 7

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}

: t(n,s) = (42,0, visible)
> { ! \ ! t(n,s[0]) = (71,0,visible)

6 7
n+1 fCu: mut [[164; nl; m], m n: u6s)
U LW t'(n+1,u) = (42,0,visible)
' t'(n+1,ul0]) = (71,0,visible)
6 7

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Visibility)

t:NXxP—->N"xNxV V = {visible} U {Hidden(p) | p € P}
: t(n,s) = (42,0, visible)
> { ! \ ! t(n,s[0]) = (71,0,visible)
6 7
n+1 f(Cu: mut [[i64; nl; m], m n: u6s)
u: 1 4 ... t'(n+1,u) = (42,0, visible)
’ t'(n+ 1,u[0]) = (71,0, visible)
6 || 7 t'(n,s) = (42,0, Hidden(u))
: . t'(n, s[0]) = (71,0, Hidden(u[0]))

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L, — C#minor - Proof (Invariants)

Synchronisation between environments and C#minor's memory:

Vnplv, E,p]=varr lv—
dbos, t(n,p)=(b,o0,s)A
S = Visible —
Vi, 0<i<|lv|—
M([(b, 0 + i x sizeof(I'g,[p + [0]]))] = transl_value(/v[i])

Josué Moreau A language for computer algebra and its formally verified compiler 26 / 32

Translation L, — C#minor - Proof (Invariants)

Synchronisation between environments and C#minor's memory:

Vnplv, E,p]=varr lv—
dbos, t(n,p)=(b,o0,s)A
S = Visible —
Vi, 0<i<|lv|—
M([(b, 0 + i x sizeof(I'g,[p + [0]]))] = transl_value(/v[i])

Separation of visible paths in the translation function:

Vn (i,1) bo, t(n,(i,l)) = (b,o,visible) A Pg, (i) > Mmut —
(Vmp' b o,m<nAtimp)= (b, o, visible) = b # b')A
(V9 B o, (i 1) £ ' At p) = (B0,) = b # b))

Josué Moreau A language for computer algebra and its formally verified compiler

Formal verification

Coq

Theorem transl_stmt_sem_preservation:
forall p hfuncs Habort tp s s' ts t,

transl_program' hfuncs Habort p = OK tp —
match_states p hfuncs Habort s ts —

step_events (genv_of_program p) s t s' —

exists ts', plus Csharpminor.step (Genv.globalenv tp) ts t ts' A
match_states p hfuncs Habort s' ts'.

Theorem transl_program_correct hfuncs (p: program):
forall tp,

transl_program hfuncs p = OK tp —
forward_simulation (SemanticsBlocking.semantics p)
(Csharpminor.semantics tp).

Josué Moreau

A language for computer algebra and its formally verified compiler

Stats

Josué Moreau

Coq | Code / Spec Proof |
Syntax and types 814 283
Common semantics definitions and proofs 1403 1040
L; semantics 882 495
Ly semantics 367 107
|_1 — |_2 887 1642
Ly — C#minor 1901 2910
Typing 616 104
Safety 1056 2776
Miscellaneous 979 936

A language for computer algebra and its formally verified compiler

Stats

Josué Moreau

| Coq | Code / Spec Proof |
Syntax and types 814 283
Common semantics definitions and proofs 1403 1040
L; semantics 882 495
Ly semantics 367 107
|_1 — |_2 887 1642
Ly — C#minor 1901 2910
Typing 616 104
Safety 1056 2776
Miscellaneous 979 936

+ ~ 2000 lines of OCaml (parser, type inference and simplifications)

A language for computer algebra and its formally verified compiler

Generated code: addition of vectors

for i: ub4 = 0 .. n {
dest[i] = a[i] + b[i]
}

void add_vectors(a: [164; nl, b: [i64; n]l, dest: mut [i64; n], n: u64) {

Josué Moreau A language for computer algebra and its formally verified compiler

Generated code: addition of vectors (Assembler)

Josué Moreau

add_vectors:

; %rdi = a, %rsi = b, %rdx = dest, %rcx = n

xorq %rax, %rax ; %rax = i « 0

.L100:
cmpq %rcx, %rax ; for loop condition
jae .L101 ; 1 2 n = end of loop
cmpq %rcx, %rax ; array bound check
jae .L102 ; 1 =2 n = error

movq 0(%rdi,%rax,8), %r8 ; %r8 < alil
movq 0(%rsi,%rax,8), %r9 ; %r9 < b[i]

leaq 0(%r8,%r9,1), %rs8 ; %r8 < %r8 + %r9 = a[i] + b[i]
movq %r8, 0(%rdx,%rax,8) ; dest[i] <« %r8 = al[i] + b[i]
leaq 1(%rax), %rax ;1 e« 1+ 1
jmp .L100
.L102: ; translation of error
call abort
jmp .L102
.L101:
ret

A language for computer algebra and its formally verified compiler

30 / 32

Conclusion

We now have

A language
m safe
m suitable for computer algebra algorithms
m simplifying proof of programs (no aliasing, no memory, mutability)

Josué Moreau A language for computer algebra and its formally verified compiler 31/32

We now have

A language

m safe

m suitable for computer algebra algorithms

m simplifying proof of programs (no aliasing, no memory, mutability)
A formally verified compiler

m generating correct code

semantics preservation theorem proved with Coq
m a bit of optimization

Josué Moreau A language for computer algebra and its formally verified compiler 31 /32

Future work

m More constructions
E array views
m records
m malloc / free (in progress)

Josué Moreau A language for computer algebra and its formally verified compiler

Future work

m More constructions

E array views
m records
m malloc / free (in progress)

m Programs logic (= functional correctness)

Josué Moreau A language for computer algebra and its formally verified compiler 32 /32

Future work

m More constructions

E array views
m records
m malloc / free (in progress)

m Programs logic (= functional correctness)

m Optimizations / performance

Josué Moreau A language for computer algebra and its formally verified compiler 32 /32

Thanks |

Semantics: evaluation of path

Vk,E,F b uy = vintgg ng
EFFi=vV
build_index V 1 = Some j

. valid_index v n
EvPNil EvScell

E.F,_+Hl=1] E,F, i F (scell 1) §= (Pcell j) = Z

Josué Moreau A language for computer algebra and its formally verified compiler

Semantics: evaluation of path - error cases

Vk,E, F F u, = Vvintgq ng

E,FFi=v
build_index V 1 = Some j Vk,E,F+ ug = Vintes ng
—wvalid_index V A E,Fti= error
ErrP1 - — ErrP2 = =
E,F,i: |t (Scell i) ::§=>error E,F,i:: |+ (Scell i) :: 5= error

Josué Moreau A language for computer algebra and its formally verified compiler 32 /32

Example: Eratosthene’s sieve

fun eratosthene(prime: mut [bool; N], N: u6z) {
if N < 2 return;
prime[Qu32] = false;
prime[1u32] = false;
for k: u64 = 4 .. N step 2
prime[k] = false;
let i: u6b4 = 3;
while (i *» 1 < N) {
if prime[i] {
for j: u64 =1 .. (N/ i + 1) step 2
prime[i * j] = false;

Josué Moreau A language for computer algebra and its formally verified compiler

32/ 32

Example: Block Matrix Multiplication

fun block_mul_matrix(a: [i64; m, n], b: [i64; n, p]l, dest: mut [i64; m, p],
mn p bs: u6s) {

let s: 164 0;
for I: ub4 = 0 .. m step bs {
let Imax: u64 = min(m, I + bs);
for J: u64 = 0 .. p step bs {
let Jmax: u64 = min(p, J + bs);

for K: u6s = 0 n step bs {
let Kmax: u64 = min(n, K + bs);
for i: w64 = I .. Imax
for j: ub4t = 3 .. IJmax {
s = 0;

for k; ubs = K .. Kmax
s = s + ali, k] * b[k, jI;
dest[i, j] = dest[i, j] + s

Josué Moreau A language for computer algebra and its formally verified compiler

Example: Gauss

fun gauss(A: mut [f64; n, m], n m: u6s) {
let r: u64 = 0;
for j: i64 = 0 .. m {
let k: i64 = search_max_abs(A, n, m, r, j);
if (k = -1) break;
if ALk, j1 ##= 0. {
divide_line_by_const(A, n, m, (u64) k, Alk, j1);
if (ues) k = r
exchange_lines(A, n, m, (u64) k, r);
for i: u64 = 0 .. n {
ifis#r
add_lines(A, n, m, i, j, - A[i, j1);
}
r

=r + 1

Josué Moreau

A language for computer algebra and its formally verified compiler

Example: Dot product of complex vectors (BLAS)

fun zdotu(n: u64, zx: [f64; 2%n], incx: 132,
zy: [f64; 2*n], incy: 132, res: mut [f64; 2]) {
res[0] = 0.; res[1] = 0.;
if n € 0 return;
if incx = 1 & incy = 1 {
for i: u64 = @ .. (2 * n) step 2 {
res[0] = res[0] + zx[i] * zy[i] - zx[i+1] % zy[i+1];
res[1] = res[1] + zx[i+1] % zy[i] + zx[i] % zy[i+1];
}
} else {
let ix: 132 = 1; let iy: 132 = 1;
if (incx < @) ix = (-(i32)(2*n)+1)*incx + 1;
if (incy < @) iy = (-(i32)(2*n)+1)*incy + 1;
for i: u64 =@ .. n {
res[0] = res[0] + zx[ix] * zy[iy] - zx[ix+1] * zy[iy+1];
res[1] = res[1] + zx[ix+1] % zy[iy] + zx[ix] * zy[iy+1];
ix = ix + 2 * incx; iy = iy + 2 * incy;

bl

Josué Moreau A language for computer algebra and its formally verified compiler

Translation L; — L,: test generation

ET(divu(er, €)) = ET(e1) + ET(e) + (e2 # 0)

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 32 /32

Translation L; — L,: test generation

ET(divu(er, €)) = ET(e1) + ET(e) + (e2 # 0)
ET(divs(er, e2)) = ET(er) + ET(e2)+
(e2 #O0 N (€1 # min_sint V ey # —1))

The order of tests is important.

Josué Moreau A language for computer algebra and its formally verified compiler 32 /32

Translation L; — L,: test generation

ET(divu(el, eg))
ET(divs(er, e2))

ET((int32,unsigned — 1intey Un51gned)e)
ET((intgqunsigned — intsy Un51gned)e>

m

((
((
T((int — float)e)

ET((ﬂoatgg — intgg Slgned)e)
ET((floatgy — intgy Slgned)e)
ET((floatsy — intgy Un51gned)e)
ET((float64 — intgy Un51gned)e)
ET(X[i1, ..., ik])

The order of tests is important.

Josué Moreau

ET(e1) + ET(e2) + (&2 # 0)

ET(e1) +H ET(e2)+H-

(e2 #O0 N (€1 # min_sint V ey # —1))
E

T(e)

ET(e)

ET(e)

ET(e) H (=23 < e < 23
eT(e) H (=231 —1 < e < 23)
ET(e) H (—1l<e< 232)

ET(e) H (—1 < e < 232)
ET(iy) ++ ... +H ET(ix)H

(i1 <y 51) +H . (ik <y Sk)
where sq, ...,

A language for computer algebra and its formally verified compiler

sy are the size variables of x

32/ 32

Generated code: addition of vectors (L,)

{
u6s $8; ub4 $9; ubs i;
/* $9 = n; */
i = Qubs;
$8 = n;

while true {
if (1 <u $8) {
dest[i] = a[i] + b[i];
i =1 + 1ubk;
} else break;
}
I3

void add_vectors(a: [i64; n], b: [i64; n], dest: mut [164; n], n: u64)

Josué Moreau A language for computer algebra and its formally verified compiler

32/ 32

Generated code: addition of vectors (L>)

{
u6s $8; ub4 $9; u6bs i;
/* $9 = n; */
i = Qubs;
$8 = n;

while true {
if (1 <u $8) {
assert (i <u $9);
dest[i] = a[i] + b[il;
i =1 + 1ubk;
} else break;
}
}

void add_vectors(a: [i64; n], b: [164; n], dest: mut [164; nl, n: u64)

Josué Moreau A language for computer algebra and its formally verified compiler

32/ 32

Generated code: addition of vectors (Cminor)

"add_vectors"('a', 'b', 'dest', 'n') : long — long — long — long — void
{
var '$9', '$8', 'i';
goto 'code';
'error': "abort"() : void;
goto 'error';
'code': '$9' = 'n'; '$9' = 'n'; '$9' = 'n'; 'i' = OLL; '$8' = 'n';
{{ Toop {
{{if ('i' <lu '$8') {
if ("i' <lu '$9') { /*skipx/ }
else { goto 'error'; }
int64['dest' +1 8LL %1 'i'] =
int64['a’ +1 8LL *1 'i'] +1 int64['b' +1 8LL *1 'i'];
U= it o4l 1LL;
} else { exit 1; }
3
}
1}
}

Josué Moreau A language for computer algebra and its formally verified compiler 32 /32

	Introduction
	Design of the language
	Semantics
	Compilation
	Conclusion
	Appendix

