The (big) numbers game LMF Laboratoire Méthodes Formelles

Arnaud Golfouse

November 5th 2024

image courtesy of www.internationalposter.com

LARGE NUMBER CHAMPIONSHIP

Two competitors. One chalkboard. Largest integer wins.

Sponsored by MIT Linguistics & Philosophy. For details see http://student.mit.edu/iap/nc19.html

Friday Jan. 26

Your MIT DEFENDING CHAMPION

Agustín "The Mexican multiplier" "Plural power" "Ray gun" RAYO

[▶] 3pm 32-D461

The CHALLENGER

Adam "The mad Bayesian" "Dr. Evil" "Elg-finity" ELGA

COMPETITION!

The duel between Agustín Rayo and Adam Elga went like this:

• 1

- 11111111111111111111111111111
- $BB(10^{100})$
- Busy Beaver hierarchy $\Rightarrow BB_{\theta}(10^{100})$
- Rayo's number

Outline

- Knuth's arrows
- Fast-growing hierarchy
- Busy beavers
- Rayo's number

Outline

- Knuth's arrows
- Fast-growing hierarchy
- Busy beavers
- Rayo's number

- \rightarrow Primitive recursive functions
- \rightarrow General recursion
- \rightarrow Non-computable functions
- → Second-order logic

- addition: 100 + 100
- multiplication: 100×100
- exponentiation: 100¹⁰⁰
- tower of exponentiations:

100^{100...100} 100 100 times

$$a \uparrow b \triangleq a^{b}$$

$$a \uparrow \uparrow b \triangleq \underbrace{a \uparrow (a \uparrow (a \uparrow ...))}_{b \text{ copies of } a}$$

$$\dots$$

$$a \uparrow^{n} b \triangleq \underbrace{a \uparrow^{n-1} (a \uparrow^{n-1} (a \uparrow^{n-1} ...))}_{b \text{ copies of } a}$$

$$gogol = 10^{100} = 10 \uparrow 100$$

$$gogolplex = 10^{10^{100}} < 10 \uparrow \uparrow 4$$

$$\underbrace{100^{100}}_{100 \text{ times}} = 100 \uparrow \uparrow 100$$

$$gogol = 10^{100} = 10 \uparrow 100$$

 $gogolplex = 10^{10^{100}} < 10 \uparrow \uparrow 4$
 $\underbrace{100^{100}}_{100 \text{ times}} = 100 \uparrow \uparrow 100$

 $3\uparrow\uparrow\uparrow 3$

$$gogol = 10^{100} = 10 \uparrow 100$$

$$gogolplex = 10^{10^{100}} < 10 \uparrow \uparrow 4$$

$$\underbrace{100^{100^{..100}}}_{100 \text{ times}} = 100 \uparrow \uparrow 100$$

$$3 \uparrow \uparrow \uparrow 3 = 3 \uparrow \uparrow (3 \uparrow \uparrow 3)$$

$$gogol = 10^{100} = 10 \uparrow 100$$

$$gogolplex = 10^{10^{100}} < 10 \uparrow \uparrow 4$$

$$\underbrace{100^{100}}_{100 \text{ times}} = 100 \uparrow \uparrow 100$$

$$3 \uparrow \uparrow \uparrow 3 = 3 \uparrow \uparrow (3 \uparrow \uparrow 3)$$
$$= 3 \uparrow \uparrow (3 \uparrow (3 \uparrow 3))$$

$$gogol = 10^{100} = 10 \uparrow 100$$

$$gogolplex = 10^{10^{100}} < 10 \uparrow \uparrow 4$$

$$\underbrace{100^{100}}_{100 \text{ times}} = 100 \uparrow \uparrow 100$$

$$3 \uparrow \uparrow \uparrow 3 = 3 \uparrow \uparrow (3 \uparrow \uparrow 3)$$
$$= 3 \uparrow \uparrow (3 \uparrow (3 \uparrow 3))$$
$$= 3 \uparrow \uparrow (3 \uparrow (3 \uparrow 3))$$

$$gogol = 10^{100} = 10 \uparrow 100$$

$$gogolplex = 10^{10^{100}} < 10 \uparrow \uparrow 4$$

$$\underbrace{100^{100}}_{100 \text{ times}} = 100 \uparrow \uparrow 100$$

$$3 \uparrow \uparrow \uparrow 3 = 3 \uparrow \uparrow (3 \uparrow \uparrow 3)$$
$$= 3 \uparrow \uparrow (3 \uparrow (3 \uparrow 3))$$
$$= 3 \uparrow \uparrow (3^{27})$$
$$= \underbrace{3^{3^{27}}}_{3^{27} \text{ times}}$$

$g_1 = 3 \uparrow \uparrow \uparrow \uparrow 3$

$$g_2 = 3 \underbrace{\uparrow \uparrow \dots \uparrow}_{3} 3$$

 $g_1 = 3 \underbrace{\uparrow \uparrow \dots \uparrow}_{3} 3$

$$g_{3} = \begin{array}{ccc} 3 & \underbrace{\uparrow\uparrow} & \ldots & \uparrow & 3 \\ g_{2} = & \begin{array}{ccc} 3 & \underbrace{\uparrow\uparrow} & \ldots & \uparrow & 3 \\ g_{1} = & \begin{array}{ccc} 3 & \underbrace{\uparrow\uparrow} & \ldots & \uparrow & 3 \\ \end{array} \\ g_{1} = & \begin{array}{ccc} 3 & \underbrace{\uparrow\uparrow\uparrow} & \ldots & \uparrow & 3 \\ \end{array}$$

$$G = g_{64} = 3 \underbrace{\uparrow\uparrow \dots \uparrow}_{3} \underbrace{\uparrow\uparrow \dots \uparrow}_{3} 3$$

$$g_{3} = 3 \underbrace{\uparrow\uparrow \dots \uparrow}_{3} 3$$

$$g_{2} = 3 \underbrace{\uparrow\uparrow \dots \uparrow}_{3} 3$$

$$g_1 =$$
 3 $\uparrow\uparrow\uparrow\uparrow$ 3

Take a coloring of an *n*-dimensional cube, and try to extract a single-colored subgraph of size 4:

Take a coloring of an *n*-dimensional cube, and try to extract a single-colored subgraph of size 4:

Take a coloring of an *n*-dimensional cube, and try to extract a single-colored subgraph of size 4:

If you take the *n*-dimensional cube, and consider the complete graph of its vertices, any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with a single color.

< n <

If you take the *n*-dimensional cube, and consider the complete graph of its vertices, any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with a single color.

 $< n < g_{\rm 64}$

If you take the *n*-dimensional cube, and consider the complete graph of its vertices, any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with a single color.

 $13 < n < g_{64}$

If you take the *n*-dimensional cube, and consider the complete graph of its vertices, any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with a single color.

$13 < n < 2 \uparrow \uparrow (2 \uparrow \uparrow 5138)$

A family of functions $f_{\alpha}(n)$, where α is an ordinal.

- 0, 1, 2, 3, ...
- $\omega = \{0, 1, 2, ...\}$
- $\omega + \mathbf{1} = \omega \cup \{\omega\}$

- •
- •
- •
- •

• 0, 1, 2, 3, ...

•

- •
- •
- •

• 0, 1, 2, 3, ...

- $\omega = \{0, 1, 2, ...\} \rightarrow \parallel \parallel \parallel \parallel$
- $\omega + 2 = (\omega + 1) \cup \{\omega + 1\}$
- $2\omega = \{0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...\}$

\rightarrow		
\rightarrow		
\rightarrow		

• 0, 1, 2, 3, ...

•

- $\omega = \{0, 1, 2, ...\}$
- $\omega + 2 = (\omega + 1) \cup \{\omega + 1\}$
- $2\omega = \{0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...\}$
- $\omega^2 = \{..., 2\omega, 3\omega, ...\}$

- 0, 1, 2, 3, ...
- $\omega = \{0, 1, 2, ...\}$
- $\omega + 2 = (\omega + 1) \cup \{\omega + 1\}$
- $2\omega = \{0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...\}$
- $\omega^2 = \{..., 2\omega, 3\omega, ...\}$
- $\omega^{\omega} = \{..., \omega^2, \omega^3, ...\}$

•

- 0, 1, 2, 3, ...
- $\omega = \{0, 1, 2, ...\}$
- $\omega + 2 = (\omega + 1) \cup \{\omega + 1\}$
- $2\omega = \{0, 1, 2, ..., \omega, \omega + 1, \omega + 2, ...\}$
- $\omega^2 = \{..., 2\omega, 3\omega, ...\}$
- $\omega^{\omega} = \{..., \omega^2, \omega^3, ...\}$
- $\omega^{\omega^{\omega}+3}+\omega^2+5$

\rightarrow			
\rightarrow			
\rightarrow			
\rightarrow		• • • • • •	

- $f_0(n) = n + 1$
- $f_1(n) =$
- $f_2(n) =$
- $f_{\omega}(n) =$
- $f_{\omega+1}(n) =$

- $f_0(n) = n + 1$
- $f_1(n) = (f_0)^n(n) = f_0(f_0(...f_0(n))) = 2n$
- $f_2(n) =$
- $f_{\omega}(n) =$
- $f_{\omega+1}(n) =$

- $f_0(n) = n + 1$
- $f_1(n) = (f_0)^n(n) = f_0(f_0(...f_0(n))) = 2n$
- $f_2(n) = f_1(f_1(...f_1(n))) = n \times 2^n$
- $f_{\omega}(n) =$
- $f_{\omega+1}(n) =$

- $f_0(n) = n + 1$
- $f_1(n) = (f_0)^n(n) = f_0(f_0(...f_0(n))) = 2n$
- $f_2(n) = f_1(f_1(...f_1(n))) = n \times 2^n$
- $f_{\omega}(n) = f_n(n)$
- $f_{\omega+1}(n) =$

- $f_0(n) = n + 1$
- $f_1(n) = (f_0)^n(n) = f_0(f_0(...f_0(n))) = 2n$
- $f_2(n) = f_1(f_1(...f_1(n))) = n \times 2^n$
- $f_{\omega}(n) = f_n(n)$
- $f_{\omega+1}(n) = f_{\omega}(f_{\omega}(...f_{\omega}(n)))$

• $f_{2\omega}(n) = f_{\omega+\omega}(n)$ = $f_{\omega+n}(n)$ • $f_{\omega^2}(n) = f_{n\times\omega}(n)$

$$= f_{(n-1)\times\omega+n}(n)$$

- $f_{\omega^{\omega}}(n) = f_{\omega^n}(n)$
- etc.

Let α be an ordinal (smaller than ε_0).

- $f_0(n) \triangleq n+1$
- $f_{\alpha(n)}$:
- $f_{0}(n) \triangleq n + 1$ $f_{\alpha(n)}:$ $f_{\alpha(n)}:$ $f_{\alpha(n)} = \alpha' + 1, f_{\alpha(n)} \triangleq (f_{\alpha'})^{n}(n)$ $f_{\alpha(n)} \triangleq f_{\alpha[n]}(n), \text{ where } \rightarrow$ $f_{\alpha(n)} \triangleq \omega^{\beta(n)} \triangleq \omega^{\beta(n)}$

 $f_{\omega^2}(\mathbf{2})$

$$f_{\omega^2}(2) = f_{2\omega}(2)$$
$$= f_{\omega+2}(2)$$

$$f_{\omega^2}(2) = f_{2\omega}(2)$$

= $f_{\omega+2}(2)$
= $f_{\omega+1}(f_{\omega+1}(2))$
= $f_{\omega+1}(f_{\omega}(f_{\omega}(2)))$

$$f_{\omega^{2}}(2) = f_{2\omega}(2)$$

= $f_{\omega+2}(2)$
= $f_{\omega+1}(f_{\omega+1}(2))$
= $f_{\omega+1}(f_{\omega}(f_{\omega}(2)))$
= $f_{\omega+1}(f_{\omega}(f_{2}(2)))$

$$f_{\omega^2}(2) = f_{2\omega}(2)$$

= $f_{\omega+2}(2)$
= $f_{\omega+1}(f_{\omega+1}(2))$
= $f_{\omega+1}(f_{\omega}(f_{\omega}(2)))$
= $f_{\omega+1}(f_{\omega}(f_2(2)))$
= $f_{\omega+1}(f_{\omega}(8))$

$$f_{\omega^{2}}(2) = f_{2\omega}(2)$$

= $f_{\omega+2}(2)$
= $f_{\omega+1}(f_{\omega+1}(2))$
= $f_{\omega+1}(f_{\omega}(f_{\omega}(2)))$
= $f_{\omega+1}(f_{\omega}(f_{2}(2)))$
= $f_{\omega+1}(f_{\omega}(8))$
= $f_{\omega+1}(f_{8}(8))$
= ...

$$f_\omega(n)=f_n(n)$$

$f_{\omega}(n) = f_n(n) \rightarrow \quad \approx {\rm Knuth's \ arrows \ !}$

$$f_{\omega}(n) = f_n(n) \rightarrow \quad \approx \text{Knuth's arrows !}$$

$$f_{\omega+1}(n) = f_{\omega}(f_{\omega}(...f_{\omega}(n)))$$

$$\begin{split} f_{\omega}(n) &= f_n(n) \to \quad \approx \text{Knuth's arrows !} \\ f_{\omega+1}(n) &= f_{\omega}(f_{\omega}(...f_{\omega}(n))) \to \text{Graham's number !} \end{split}$$

$$f_{\varepsilon_0}(n) = f_{\underbrace{\omega^{\omega^{\ldots}\omega}}_{n \text{ times}}}(n)$$

Busy beavers and oracles

The second-to-last of Rayo's propositions was $BB(10^{100})$: what is that?

Take all turing machines that:

- Have the alphabet $\{0, 1\}$
- Have n or less states
- Run on a originally all 0 tape
- Terminate

Take all turing machines that:

- Have the alphabet $\{0, 1\}$
- Have n or less states
- Run on a originally all 0 tape
- Terminate

Then BB(n) is the maximum numbers of 1s at the end of the execution of such a machine.

Take all turing machines that:

- Have the alphabet $\{0, 1\}$
- Have n or less states
- Run on a originally all 0 tape
- Terminate

Then $\mathrm{BB}(n)$ is the maximum numbers of 1s at the end of the execution of such a machine.

→ This already beats our previous solutions!

With those "second-order" Turing machines, we can define $BB_2(n)$.

With those "second-order" Turing machines, we can define $BB_2(n)$.

Then $BB_3(n)$, $BB_4(n)$, $BB_5(n)$, ...

With those "second-order" Turing machines, we can define $BB_2(n)$.

```
Then BB_3(n), BB_4(n), BB_5(n), ...
```

Then $\mathrm{BB}_{\omega}(n)$...

With those "second-order" Turing machines, we can define $BB_2(n)$.

```
Then BB_3(n), BB_4(n), BB_5(n), ...
```

Then $\mathrm{BB}_\omega(n)$...

Same as before, we need to stop eventually: Adam Elga stopped at $BB_{\theta}(10^{100})$.

Winner?

So, can we even go beyond that in any meaningful way?

So, can we even go beyond that in any meaningful way? yes!

We generalized over the notion of computation : it's time to generalize over logic itself!

We generalized over the notion of computation : it's time to generalize over logic itself!

Rayo's number is the biggest number that can be defined with a first-order formula of size 10¹⁰⁰.

If we have a function $[\cdot]$: formula $\to \mathbb{N}$, define the second-order formula $\operatorname{Sat}([\varphi], s)$ to mean

for all $R, \{ \forall \psi, \forall t \text{ a variable assignement},$

$$\begin{split} R([\psi],t) &\leftrightarrow \left(\left(\psi = "x_i \in x_j" \wedge t(x_i) \in t(x_j) \right) \lor \right. \\ \left(\psi = "x_i = x_j" \wedge t(x_i) = t(x_j) \right) \lor \\ \left(\psi = "\neg \theta" \wedge \neg R([\theta],t) \right) \lor \\ \left(\psi = "\theta_1 \wedge \theta_2" \wedge R([\theta_1],t) \wedge R([\theta_2],t) \right) \lor \\ \left(\psi = "\exists x_i \theta" \wedge \exists X, R([\theta],t[x_i \leftarrow X])) \right) \\ \right\} &\rightarrow R([\varphi],s) \end{split}$$

Then Rayo's number is

$$R \coloneqq \max\left(\left\{m \in \mathbb{N} \mid \exists \varphi \in \operatorname{arity}(1), \\ |\varphi| \leq 10^{100} \\ \exists s, \operatorname{Sat}([\varphi], s) \land s(x_1) = m \\ \forall t, \operatorname{Sat}([\varphi], t) \to t(x_1) = m \\ \right\}\right)$$

Thank you!