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Why do we care?

The duel between Agustín Rayo and Adam Elga went like this:
• 1
• 111111111111111111111111
• 11 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
• BB(10100)
• Busy Beaver hierarchy ⇒ BB𝜃(10100)
• Rayo’s number
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Why do we care?

Outline

• Knuth’s arrows
• Fast-growing hierarchy
• Busy beavers
• Rayo’s number
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Why do we care?

Outline

• Knuth’s arrows → Primitive recursive functions
• Fast-growing hierarchy → General recursion
• Busy beavers → Non-computable functions
• Rayo’s number → Second-order logic
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Knuth’s up-arrow notation



Iterate on operations

• addition: 100+ 100

• multiplication: 100× 100

• exponentiation: 100100

•
tower of exponentiations:

100

(100100 ⋯100)
⏟⏟⏟⏟⏟⏟⏟

100 times
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Knuth’s up-arrow notation

𝑎 ↑ 𝑏 ≜ 𝑎𝑏

𝑎 ↑↑ 𝑏 ≜ 𝑎 ↑ (𝑎 ↑ (𝑎 ↑ …))⏟⏟⏟⏟⏟⏟⏟
𝑏 copies of 𝑎

…

𝑎 ↑𝑛 𝑏 ≜ 𝑎 ↑𝑛−1 (𝑎 ↑𝑛−1 (𝑎 ↑𝑛−1 …))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑏 copies of 𝑎
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Examples

gogol = 10100 = 10 ↑ 100

gogolplex = 1010
100

< 10 ↑↑ 4

100100 ⋯100

⏟⏟⏟⏟⏟
100 times

= 100 ↑↑ 100
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Examples

gogol = 10100 = 10 ↑ 100

gogolplex = 1010
100

< 10 ↑↑ 4

100100 ⋯100

⏟⏟⏟⏟⏟
100 times

= 100 ↑↑ 100

3 ↑↑↑ 3
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Examples

gogol = 10100 = 10 ↑ 100

gogolplex = 1010
100

< 10 ↑↑ 4

100100 ⋯100

⏟⏟⏟⏟⏟
100 times

= 100 ↑↑ 100

3 ↑↑↑ 3 = 3 ↑↑ (3 ↑↑ 3)
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Examples

gogol = 10100 = 10 ↑ 100

gogolplex = 1010
100

< 10 ↑↑ 4

100100 ⋯100

⏟⏟⏟⏟⏟
100 times

= 100 ↑↑ 100

3 ↑↑↑ 3 = 3 ↑↑ (3 ↑↑ 3)
= 3 ↑↑ (3 ↑ (3 ↑ 3))
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Examples

gogol = 10100 = 10 ↑ 100

gogolplex = 1010
100

< 10 ↑↑ 4

100100 ⋯100

⏟⏟⏟⏟⏟
100 times

= 100 ↑↑ 100

3 ↑↑↑ 3 = 3 ↑↑ (3 ↑↑ 3)
= 3 ↑↑ (3 ↑ (3 ↑ 3))

= 3 ↑↑ (327)
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Examples

gogol = 10100 = 10 ↑ 100

gogolplex = 1010
100

< 10 ↑↑ 4

100100 ⋯100

⏟⏟⏟⏟⏟
100 times

= 100 ↑↑ 100

3 ↑↑↑ 3 = 3 ↑↑ (3 ↑↑ 3)
= 3 ↑↑ (3 ↑ (3 ↑ 3))

= 3 ↑↑ (327)

= 33 ⋯3

⏟
327times
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Graham’s number
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Graham’s number

𝑔1 = 3  ↑↑↑↑  3
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Graham’s number

𝑔2 = 3  ↑↑ … ↑⏟ 3

𝑔1 = 3  ↑↑↑↑  3
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Graham’s number

𝑔3 = 3  ↑↑ ……… ↑⏟⏟⏟⏟⏟ 3

𝑔2 = 3  ↑↑ … ↑⏟ 3

𝑔1 = 3  ↑↑↑↑  3
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Graham’s number

𝐺 = 𝑔64 = 3  ↑↑ ………………… ↑⏟⏟⏟⏟⏟⏟⏟⏟⏟ 3

3  ↑↑ …………… ↑⏟⏟⏟⏟⏟⏟⏟ 3

⋮

𝑔3 = 3  ↑↑ ……… ↑⏟⏟⏟⏟⏟ 3

𝑔2 = 3  ↑↑ … ↑⏟ 3

𝑔1 = 3  ↑↑↑↑  3
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What is the use of 𝑔64?

Take a coloring of an 𝑛-dimensional cube, and try to extract a single-colored
subgraph of size 4:
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What is the use of 𝑔64?

Take a coloring of an 𝑛-dimensional cube, and try to extract a single-colored
subgraph of size 4:
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What is the use of 𝑔64?

Find the smallest 𝑛, such that:

If you take the 𝑛-dimensional cube, and consider the complete graph of its vertices,
any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with
a single color.

< 𝑛 <
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What is the use of 𝑔64?

Find the smallest 𝑛, such that:

If you take the 𝑛-dimensional cube, and consider the complete graph of its vertices,
any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with
a single color.

13 < 𝑛 < 𝑔64
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What is the use of 𝑔64?

Find the smallest 𝑛, such that:

If you take the 𝑛-dimensional cube, and consider the complete graph of its vertices,
any 2-coloring of the edges of this graph contains a complete subgraph of size 4 with
a single color.

13 < 𝑛 < 2 ↑↑ (2 ↑↑ 5138)

Knuth’s up-arrow notation 10 / 29



Fast-growing functions hierarchy



The fast-growing functions hierarchy

A family of functions 𝑓𝛼(𝑛), where 𝛼 is an ordinal.
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Reminder on ordinals

• 0,1,2,3, …
• 𝜔 = {0,1,2, …} →
• 𝜔 + 1 = 𝜔 ∪ {𝜔} →
•
•
•
•
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Reminder on ordinals

• 0,1,2,3, …
• 𝜔 = {0,1,2, …} →
• 𝜔 + 2 = (𝜔 + 1) ∪ {𝜔 + 1} →
•
•
•
•
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Reminder on ordinals

• 0,1,2,3, …
• 𝜔 = {0,1,2, …} →
• 𝜔 + 2 = (𝜔 + 1) ∪ {𝜔 + 1} →
• 2𝜔 = {0,1,2, …, 𝜔, 𝜔 + 1, 𝜔 + 2, …} →
•
•
•
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Reminder on ordinals

• 0,1,2,3, …
• 𝜔 = {0,1,2, …} →
• 𝜔 + 2 = (𝜔 + 1) ∪ {𝜔 + 1} →
• 2𝜔 = {0,1,2, …, 𝜔, 𝜔 + 1, 𝜔 + 2, …} →
• 𝜔2 = {…,2𝜔,3𝜔, …} → ……

•
•
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Reminder on ordinals

• 0,1,2,3, …
• 𝜔 = {0,1,2, …} →
• 𝜔 + 2 = (𝜔 + 1) ∪ {𝜔 + 1} →
• 2𝜔 = {0,1,2, …, 𝜔, 𝜔 + 1, 𝜔 + 2, …} →
• 𝜔2 = {…,2𝜔,3𝜔, …} → ……

• 𝜔𝜔 = {…, 𝜔2, 𝜔3, …}
•
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Reminder on ordinals

• 0,1,2,3, …
• 𝜔 = {0,1,2, …} →
• 𝜔 + 2 = (𝜔 + 1) ∪ {𝜔 + 1} →
• 2𝜔 = {0,1,2, …, 𝜔, 𝜔 + 1, 𝜔 + 2, …} →
• 𝜔2 = {…,2𝜔,3𝜔, …} → ……

• 𝜔𝜔 = {…, 𝜔2, 𝜔3, …}
• 𝜔𝜔𝜔+ 3 + 𝜔2 + 5
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Some 𝑓𝛼 functions

• 𝑓0(𝑛) = 𝑛 + 1

• 𝑓1(𝑛) = 

• 𝑓2(𝑛) = 

• 𝑓𝜔(𝑛) = 

• 𝑓𝜔+1(𝑛) = 
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Some 𝑓𝛼 functions

• 𝑓0(𝑛) = 𝑛 + 1

• 𝑓1(𝑛) = (𝑓0)
𝑛(𝑛) = 𝑓0(𝑓0(…𝑓0(𝑛))) = 2𝑛

• 𝑓2(𝑛) = 

• 𝑓𝜔(𝑛) = 

• 𝑓𝜔+1(𝑛) = 
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Some 𝑓𝛼 functions

• 𝑓0(𝑛) = 𝑛 + 1

• 𝑓1(𝑛) = (𝑓0)
𝑛(𝑛) = 𝑓0(𝑓0(…𝑓0(𝑛))) = 2𝑛

• 𝑓2(𝑛) = 𝑓1(𝑓1(…𝑓1(𝑛))) = 𝑛 × 2𝑛

• 𝑓𝜔(𝑛) = 

• 𝑓𝜔+1(𝑛) = 
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Some 𝑓𝛼 functions

• 𝑓2𝜔(𝑛) = 𝑓𝜔+𝜔(𝑛)
= 𝑓𝜔+𝑛(𝑛)

• 𝑓𝜔2(𝑛) = 𝑓𝑛×𝜔(𝑛)
= 𝑓(𝑛− 1)×𝜔+𝑛(𝑛)

• 𝑓𝜔𝜔(𝑛) = 𝑓𝜔𝑛(𝑛)

• etc.
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Definition of 𝑓𝛼

Let 𝛼 be an ordinal (smaller than 𝜀0).

• 𝑓0(𝑛) ≜ 𝑛 + 1

• 𝑓𝛼(𝑛) :

‣ If 𝛼 = 𝛼′ + 1, 𝑓𝛼(𝑛) ≜ (𝑓𝛼′)𝑛(𝑛)

‣ Else, 𝑓𝛼(𝑛) ≜ 𝑓𝛼[𝑛](𝑛), where →

• (𝜔𝛽0 + 𝜔𝛽1 + … + 𝜔𝛽𝑘)[𝑛] ≜

𝜔𝛽0 + 𝜔𝛽1 + … + (𝜔𝛽𝑘 [𝑛])

• If 𝛽 = 𝛽′ + 1, 𝜔𝛽[𝑛] ≜ 𝑛 × 𝜔𝛽′

• Else, 𝜔𝛽[𝑛] ≜ 𝜔𝛽[𝑛]
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Examples

𝑓𝜔2(2)
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Examples

𝑓𝜔2(2) = 𝑓2𝜔(2)
= 𝑓𝜔+2(2)
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Examples

𝑓𝜔2(2) = 𝑓2𝜔(2)
= 𝑓𝜔+2(2)

= 𝑓𝜔+1(𝑓𝜔+1(2))
= 𝑓𝜔+1(𝑓𝜔(𝑓𝜔(2)))
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Examples

𝑓𝜔2(2) = 𝑓2𝜔(2)
= 𝑓𝜔+2(2)

= 𝑓𝜔+1(𝑓𝜔+1(2))
= 𝑓𝜔+1(𝑓𝜔(𝑓𝜔(2)))
= 𝑓𝜔+1(𝑓𝜔(𝑓2(2)))

Fast-growing functions hierarchy 17 / 29



Examples

𝑓𝜔2(2) = 𝑓2𝜔(2)
= 𝑓𝜔+2(2)

= 𝑓𝜔+1(𝑓𝜔+1(2))
= 𝑓𝜔+1(𝑓𝜔(𝑓𝜔(2)))
= 𝑓𝜔+1(𝑓𝜔(𝑓2(2)))
= 𝑓𝜔+1(𝑓𝜔(8))
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Examples

𝑓𝜔2(2) = 𝑓2𝜔(2)
= 𝑓𝜔+2(2)

= 𝑓𝜔+1(𝑓𝜔+1(2))
= 𝑓𝜔+1(𝑓𝜔(𝑓𝜔(2)))
= 𝑓𝜔+1(𝑓𝜔(𝑓2(2)))
= 𝑓𝜔+1(𝑓𝜔(8))
= 𝑓𝜔+1(𝑓8(8))
= …
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Examples

𝑓𝜔(𝑛) = 𝑓𝑛(𝑛)
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Examples

𝑓𝜔(𝑛) = 𝑓𝑛(𝑛) → ≈ Knuth’s arrows !
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Examples

𝑓𝜔(𝑛) = 𝑓𝑛(𝑛) → ≈ Knuth’s arrows !

𝑓𝜔+1(𝑛) = 𝑓𝜔(𝑓𝜔(…𝑓𝜔(𝑛)))
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Examples

𝑓𝜔(𝑛) = 𝑓𝑛(𝑛) → ≈ Knuth’s arrows !

𝑓𝜔+1(𝑛) = 𝑓𝜔(𝑓𝜔(…𝑓𝜔(𝑛))) → Graham’s number !
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𝑓𝜀0(𝑛) = 𝑓𝜔𝜔…𝜔
⏟
𝑛 times

(𝑛)
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Busy beavers and oracles



Busy beavers

The second-to-last of Rayo’s propositions was BB(10100) : what is that?
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Busy beavers

Take all turing machines that:
• Have the alphabet {0,1}
• Have 𝑛 or less states
• Run on a originally all 0 tape
• Terminate
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Busy beavers

Take all turing machines that:
• Have the alphabet {0,1}
• Have 𝑛 or less states
• Run on a originally all 0 tape
• Terminate

Then BB(𝑛) is the maximum numbers of 1s at the end of the execution of such a
machine.
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Busy beavers

Take all turing machines that:
• Have the alphabet {0,1}
• Have 𝑛 or less states
• Run on a originally all 0 tape
• Terminate

Then BB(𝑛) is the maximum numbers of 1s at the end of the execution of such a
machine.

→ This already beats our previous solutions!
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Oracles

Now add an oracle : a black box, that says whether a normal Turing machine
terminates or not.

With those “second-order” Turing machines, we can define BB2(𝑛).
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Oracles

Now add an oracle : a black box, that says whether a normal Turing machine
terminates or not.

With those “second-order” Turing machines, we can define BB2(𝑛).

Then BB3(𝑛), BB4(𝑛), BB5(𝑛), …
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Now add an oracle : a black box, that says whether a normal Turing machine
terminates or not.

With those “second-order” Turing machines, we can define BB2(𝑛).

Then BB3(𝑛), BB4(𝑛), BB5(𝑛), …
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Oracles

Now add an oracle : a black box, that says whether a normal Turing machine
terminates or not.

With those “second-order” Turing machines, we can define BB2(𝑛).

Then BB3(𝑛), BB4(𝑛), BB5(𝑛), …

Then BB𝜔(𝑛)…

Same as before, we need to stop eventually: Adam Elga stopped at BB𝜃(10100).
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Winner?



Winner

So, can we even go beyond that in any meaningful way? 
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Winner

So, can we even go beyond that in any meaningful way? yes!
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Winner

We generalized over the notion of computation : it’s time to generalize over logic
itself!
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Winner

We generalized over the notion of computation : it’s time to generalize over logic
itself!

Rayo’s number is the biggest number that can be defined with a first-order formula
of size 10100.
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The formula

If we have a function [⋅] : formula → ℕ, define the second-order formula Sat([𝜑], 𝑠) to mean

for all 𝑅, {∀𝜓, ∀𝑡 a variable assignement,

𝑅([𝜓], 𝑡) ↔ ((𝜓 = "𝑥𝑖 ∈ 𝑥𝑗" ∧ 𝑡(𝑥𝑖) ∈ 𝑡(𝑥𝑗)) ∨

(𝜓 = "𝑥𝑖 = 𝑥𝑗" ∧ 𝑡(𝑥𝑖) = 𝑡(𝑥𝑗)) ∨

(𝜓 = "¬𝜃" ∧ ¬𝑅([𝜃], 𝑡)) ∨
(𝜓 = "𝜃1 ∧ 𝜃2" ∧ 𝑅([𝜃1], 𝑡) ∧ 𝑅([𝜃2], 𝑡)) ∨

(𝜓 = "∃𝑥𝑖𝜃" ∧ ∃𝑋, 𝑅([𝜃], 𝑡[𝑥𝑖 ← 𝑋])))

} → 𝑅([𝜑], 𝑠)

Winner? 27 / 29



The formula

Then Rayo’s number is

𝑅 ≔ max({𝑚 ∈ ℕ ∣ ∃𝜑 ∈ arity(1),

|𝜑| ≤ 10100

∃𝑠, Sat([𝜑], 𝑠) ∧ 𝑠(𝑥1) = 𝑚
∀𝑡, Sat([𝜑], 𝑡) → 𝑡(𝑥1) = 𝑚

})

Winner? 28 / 29



Thank you!
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